ASML delivered the world's first High NA EUV extreme ultraviolet lithography machine to Intel at the end of last year. At the same time, it is researching a more powerful Hyper NA EUV lithography machine, which is expected to advance the semiconductor process to around 0.2nm, or 2 angstroms.
The aperture value of ASML's first-generation Low NA EUV lithography machine is only 0.33, and the corresponding product is named NXE series, including the existing 3400B/C, 3600D, 3800E, and the future 4000F, 4200G, and 4X00.
The series is expected to be able to mass-produce 2nm by 2025, and multiple exposures will have to be added after that. It is expected to achieve mass production of 1.4nm by 2027.
The High NA lithography machine has been upgraded to 0.55, corresponding to the EXE series of products, including the existing 5000, 5200B, and the future 5400, 5600, and 5X00.
They will start from a process below 2nm. Intel's first launch will be 14A 1.4nm. It is expected that 1nm will be mass-produced by around 2029. With multiple exposures, 0.5nm can be mass-produced around 2033, and at least 0.7nm can be supported.
The next Hyper NA lithography machine is expected to reach 0.75 or even higher and will be launched around 2030. The corresponding product will be named HXE series.
ASML estimates that the Hyper AN lithography machine may be able to achieve mass production of 0.2nm or even more advanced processes, but it is not completely certain at present.
It is worth mentioning that the diameter of a single silicon atom is about 0.1nm, but the process nodes mentioned above are not the actual physical sizes of transistors. They are just equivalent terms based on a certain percentage improvement in performance and energy efficiency.
For example, for the 0.2nm process, the actual transistor metal pitch is about 16-12nm, and will continue to shrink to 14-10nm.
Low/High/Hyper lithography machines will share a single EUV platform, and a large number of modules will be interchangeable with each other, greatly reducing R&D, manufacturing and deployment costs.
However, the price of a single High NA lithography machine is already as high as about 350 million euros, and the price of Hyper NA lithography machines will inevitably continue to increase significantly, and they are getting closer and closer to the physical limit. Therefore, no matter from the technical or cost perspective, no one knows what will happen to Hyper NA after this.
Kurt Ronse, project director of the Imec Microelectronics Research Center, said pessimistically: "It is unimaginable that the device components are only 0.2nm in size, which is only equivalent to the width of two atoms. Perhaps at some point, the existing lithography technology will inevitably end."
Previous article:Intel 3 process officially revealed: area reduced by 10%, energy efficiency soared by 17%
Next article:Google and TSMC reach cooperation: the first chip is Tensor G5, manufactured with 3nm process
- Popular Resources
- Popular amplifiers
- ASML provides update on market opportunities at 2024 Investor Day
- It is reported that memory manufacturers are considering using flux-free bonding for HBM4 to further reduce the gap between layers
- Intel China officially releases 2023-2024 Corporate Social Responsibility Report
- Mouser Electronics and Analog Devices Launch New E-Book
- AMD launches second-generation Versal Premium series: FPGA industry's first to support CXL 3.1 and PCIe Gen 6
- SEMI: Global silicon wafer shipment area increased by 6.8% year-on-year and 5.9% month-on-month in 2024Q3
- TSMC's 5nm and 3nm supply reaches "100% utilization" showing its dominance in the market
- LG Display successfully develops world's first stretchable display that can be expanded by 50%
- Infineon's revenue and profit both increased in the fourth quarter of fiscal year 2024; market weakness in fiscal year 2025 lowered expectations
- LED chemical incompatibility test to see which chemicals LEDs can be used with
- Application of ARM9 hardware coprocessor on WinCE embedded motherboard
- What are the key points for selecting rotor flowmeter?
- LM317 high power charger circuit
- A brief analysis of Embest's application and development of embedded medical devices
- Single-phase RC protection circuit
- stm32 PVD programmable voltage monitor
- Introduction and measurement of edge trigger and level trigger of 51 single chip microcomputer
- Improved design of Linux system software shell protection technology
- What to do if the ABB robot protection device stops
- CGD and Qorvo to jointly revolutionize motor control solutions
- CGD and Qorvo to jointly revolutionize motor control solutions
- Keysight Technologies FieldFox handheld analyzer with VDI spread spectrum module to achieve millimeter wave analysis function
- Infineon's PASCO2V15 XENSIV PAS CO2 5V Sensor Now Available at Mouser for Accurate CO2 Level Measurement
- Advanced gameplay, Harting takes your PCB board connection to a new level!
- Advanced gameplay, Harting takes your PCB board connection to a new level!
- A new chapter in Great Wall Motors R&D: solid-state battery technology leads the future
- Naxin Micro provides full-scenario GaN driver IC solutions
- Interpreting Huawei’s new solid-state battery patent, will it challenge CATL in 2030?
- Are pure electric/plug-in hybrid vehicles going crazy? A Chinese company has launched the world's first -40℃ dischargeable hybrid battery that is not afraid of cold
- Facing the "Smith Chart" calmly, no longer confused
- Tell a joke every day to have fun in the busy life
- Does anyone have a simulation circuit diagram of the LMD18200 chip in proteus?
- Does turning on Bluetooth and NFC for 24 hours consume power?
- 【FAQ】Implementing MultiZone Security in RISC-V Applications | Microchip Security Solutions Seminar Series
- Overview of IoT Gateway and Its Role
- TI - MCU - MSP430 User Guide 8 -> WDT Watchdog Module
- SPIN3202 control board: single resistor FOC motor drive schematics/code/debugging documents and other detailed information open source sharing (main...
- STM32F7 CubeMX automatically generates ADC self-calibration program
- The applications of TI audio chips used in smart speakers are revealed.