Article count:6059 Read by:18077454

Account Entry

The past, present and future of lithography technology

Latest update time:2024-02-24
    Reads:

  • The history of photolithography
  • Key principles and workflow of photolithography technology
  • Application and development status of photolithography technology
  • Challenges and solutions faced by current lithography technology
  • The future development direction of photolithography technology
Lithography As a precision micro-nano processing technology, it provides technical support for the manufacturing of microstructures in various fields by transferring designed micro patterns to the surface of light-sensitive materials. Its core is to use a photolithography machine to project precise patterns onto light-sensitive materials, thereby achieving precise manufacturing of tiny structures.
In today's technological era, photolithography technology is driving Semiconductor manufacturing, optical devices, biomedicine important technical support for the development of other fields. In semiconductor manufacturing, it plays a vital role, determining the performance and functionality of the chip. Not only that, the application of photolithography technology in the optical field ensures high-precision manufacturing of optical devices, and also provides the possibility of preparing fine structures in the biomedical field.

The criticality of photolithography technology in semiconductor manufacturing

In the semiconductor industry, photolithography is used to make chips cornerstone . By precisely transferring designed microscopic patterns onto the surface of silicon wafers or other semiconductor materials, photolithography determines the size of the chip. Structure and performance . It enables us to fabricate circuit structures at the micrometer or even nanometer level, becoming a core component of various electronic devices. Each generation of chip manufacturing relies on the innovation of photolithography technology, because it determines the expansion of chip functions and improvement of performance.

Wide application of photolithography technology in other fields

In addition to semiconductor manufacturing, photolithography technology is also widely used in other fields. exist Optical field , which provides necessary support for manufacturing precision optical components and ensures high precision and stability of optical equipment. exist Biomedical Science In the field, photolithography technology is used to create biochips and microfluidic systems that support cell analysis, drug delivery, and disease diagnosis. In addition, in Nanotechnology and Nanodevice Manufacturing , photolithography technology is also widely used.

The engine that drives the technological field forward

The progress of photolithography technology directly affects the progress of science and technology. Its continuously improving accuracy and resolution promote the development of micro-nano device manufacturing technology. The exploration and application of new materials and new processes provide greater space for technological innovation in various industries. At the same time, the development of environmentally friendly technology has also become one of the important directions for the development of current photolithography technology.
1. History of photolithography technology

1.1 Early photolithography methods and development

Early photolithography methods grew out of exploration of the properties of light-sensitive materials and experiments with light forming patterns on surfaces. In the early 19th century, explorations in the fields of photography and printmaking inspired people's initial thoughts on lithography technology. Initially, light-sensitive materials such as certain metal salts or films were found to be sensitive to light and could undergo chemical changes after exposure to light. This property became the basis of later photolithography technology.
With the rise of photography, people began to explore how to use the action of light to generate patterns on different surfaces. The earliest photolithography methods used light-sensitive film to transfer images to the film surface through light irradiation. This technology is widely used in photography and printmaking, laying the foundation for the subsequent development of photolithography technology.
Subsequently, people began to try to project patterns onto different surfaces, which was an important turning point in the development of photolithography technology. Experiments exploring the use of light-sensitive materials to record and reproduce patterns became a pioneer in the later application of photolithography technology to the fabrication of microstructures.
The success of these early experiments laid the foundation for the subsequent development of photolithography technology, which used the response of light-sensitive materials to light to achieve the replication and fabrication of patterns on the surface, laying a solid foundation for the birth of modern micro-nano manufacturing technology. .
1.2 Milestones of lithography technology in the 20th century
The 20th century was a critical period for the development of lithography technology. It experienced a series of important milestones, from laboratory research to industrial application, which had a profound impact on the semiconductor industry and microstructure manufacturing.
In 1925 , the emergence of the earliest lithography machine marked the beginning of the industrialization of lithography technology. These devices use glass photoplates as substrates to form microstructures on their surfaces. During this period, although photolithography technology had not yet been applied to semiconductor manufacturing, it provided an important technical foundation for subsequent industrial applications.
From the 1950s to the 1960s , with the rise of the semiconductor industry, photolithography technology began to be gradually applied to integrated circuit manufacturing . Important breakthroughs during this period included the introduction of photoresist and the first integration of photolithography with the semiconductor industry to create tiny circuits and devices.
The 1970s was an important stage for the modernization of photolithography technology. Advances in photolithography mechanical technology and optical technology have contributed to the widespread application of photolithography technology in integrated circuit manufacturing. As the size of semiconductor devices continues to shrink, photolithography technology has become one of the core methods for manufacturing microelectronic devices. At this point, photolithography began to achieve greater precision and better resolution.
At the end of the 20th century and the beginning of the 21st century , with the advancement of science and technology and the increase in demand, the importance of photolithography technology in the microelectronics industry has become more prominent. The emergence of advanced technologies such as extreme ultraviolet lithography has pushed the frontier of chip manufacturing technology, achieving higher precision and smaller size microstructure manufacturing. The milestone events of lithography technology in the 20th century, from initial experimental research to industrial application, laid a solid foundation for the development of the modern semiconductor industry. These important breakthroughs have promoted the continuous development of lithography technology, making it one of the indispensable key technologies in micro-nano manufacturing.
1.3 The rise of photolithography technology in chip manufacturing
The rise of photolithography technology in chip manufacturing is an important stage in the development of the modern semiconductor industry. This process has witnessed the development of photolithography technology from its initial experimental application to an indispensable key step in chip manufacturing.
In the 1970s, with the development of integrated circuits, chip manufacturing entered the micron level. Lithography technology began to show its importance at this stage. The principles and application methods of photolithography have shown great potential in manufacturing microstructures, making it ideal for manufacturing tiny circuits and chips. Photolithography technology has been able to dominate chip manufacturing in part because of its highly precise and controllable characteristics.
Photolithography technology covers the surface of a chip with a light-sensitive material (photoresist), and then uses a photolithography machine to project a predetermined pattern of light onto the photoresist to form a specific pattern. The accuracy and repeatability of this process determines the accuracy and performance of the final chip structure. With the continuous advancement of technology, the application of photolithography technology in chip manufacturing continues to expand. Especially under the challenge of shrinking chip size, the accuracy and resolution of photolithography technology are also constantly improving.
With the emergence of advanced technologies such as extreme ultraviolet lithography, it has become possible to create smaller and more complex structures, promoting the advancement of chip manufacturing technology. The rise of lithography technology has played a vital role in modern chip manufacturing. Its high precision, high efficiency and controllability make it one of the key processes for manufacturing advanced microelectronic devices. The widespread application of photolithography technology in chip manufacturing has promoted the rapid development of the semiconductor industry and laid a solid foundation for the advancement of modern science and technology.

2. 光刻技术的关键原理与工作流程

2.1 光刻机的基本组成与功能
光刻机是光刻技术中至关重要的设备,其主要组成包括光源、掩模、镜头系统、投影台和控制系统。光源通常是紫外线灯或激光器,用于产生高能光束。掩模(或称掩膜)是带有所需图案的透明介质,通过光源投射到目标表面。镜头系统负责将图案投射到光刻胶涂覆的硅片表面。投影台支撑硅片并确保其精确定位。控制系统则管理整个光刻过程,包括光源的强度、曝光时间等参数。

光源 光刻机的光源通常采用紫外线灯或激光器。光源的作用是提供高能量的光 束,用于曝光光刻胶。紫外线或激光被聚焦并投射到掩模上,形成预定的图案。

控制系统 :控制系统是光刻机的大脑,负责管理整个光刻过程。它监控和调整光源的强度、曝光时间、光束的聚焦和掩模对准,确保图案的准确传输到光刻胶表面。

掩模(Mask) 掩模是一个透明介质,其表面带有所需的微细图案。通过曝光和投影,掩模上的图案被投射到光刻胶上,形成所需的模板,使光刻胶固化成所需的图案。

镜头系统 :镜头系统负责将掩模上的图案投射到光刻胶涂覆的硅片或基板表面。这个系统需要具备高度精确的光学特性,以确保图案的精确转移。

投影台 :投影台是支撑硅片并确保其精确定位的平台。它承载着硅片,并通过精密控制确保其位置准确,以便在光刻过程中确保图案的精确传输。

2.2 曝光、光刻胶与图形转移
光刻技术的核心在于将所需图案精确地转移到硅片或其他基板表面。这一过程以曝光为核心,通过将光源通过掩模形成的图案投射到涂覆在硅片表面的光刻胶上。光刻胶是一种光敏感材料,在曝光后会发生化学变化。曝光后,光刻胶固化形成所需图案的模板。接着进行显影和蚀刻等步骤,将模板转移到硅片表面。

曝光过程 :曝光是将掩模上的图案投影到光刻胶表面的过程。掩模上的图案被光源通过光学系统投射到涂覆在硅片或基板上的光刻胶上。在光刻机中,光刻胶的特性使其在接受光照后发生化学变化,例如部分固化或溶解。曝光过程中光刻机控制光源的强度和时间,以确保图案准确地转移到光刻胶表面。

光刻胶 :光刻胶是一种光敏感材料,其特性在光照下发生改变。它覆盖在硅片或基板上,接受掩模上图案的投影。曝光后,光刻胶的部分区域发生化学变化,变得更坚硬或更容易溶解。这种变化使得光刻胶形成了图案的模板,为后续步骤如显影和蚀刻提供了依据。

图形转移 :在曝光后,光刻胶上形成了掩模上图案的复制。接下来是显影和蚀刻步骤。显影是将未暴露于光的区域溶解掉,留下暴露于光的区域。接着进行蚀刻,利用化学溶液或物理方法去除显影后的部分,暴露出硅片或基板表面。最终,光刻胶被去除,留下所需的微细图案,这些图案用于半导体芯片或其他微纳米制造中。

2.3 掩模制作与设计
掩模的制作和设计是确保光刻过程中图案准确传输的关键。通过光刻或电子束曝光,将设计好的图案转移到掩模上。掩模设计需要考虑图案的尺寸、分辨率和形状,以及光刻胶和硅片之间的适配性。高质量的掩模设计能够直接影响到最终制造出的微细结构的质量和准确度。

制作过程:

图案设计 :掩模的制作始于对所需图案的设计。通常使用计算机辅助设计软件(CAD)创建高精度的图案。这些图案需要考虑到光刻胶的特性以及图案在硅片上的投影效果。
光刻或电子束曝光 :利用光刻或电子束曝光技术将设计好的图案投射到掩模上。这个步骤需要高精度的设备和技术,确保掩模上的图案与设计的图案完全一致。
图案检验与修正 :制作完成后,掩模需要进行严格的检验和修正。利用显微镜等工具检查掩模上的图案是否与设计一致,如果存在缺陷或不符合要求,则需要进行修正。

设计原则

分辨率与精度 :控制图案的分辨率和精度是掩模设计的关键。要确保所需的微细结构在投影时能够精确地传输到光刻胶上。
光学性能 :掩模材料和表面的光学性能对图案传输至关重要。透明度、折射率等参数需要仔细考虑,以确保投影的精确性。
材料与制作工艺 :掩模制作所使用的材料和制作工艺应当符合图案传输的要求。耐用性、稳定性和可重复性是选择材料和工艺的重要因素。

3. 光刻技术的应用与发展现状

3.1 芯片制造中的应用与进展

光刻技术在芯片制造领域一直发挥着关键作用。随着半导体工业对微小结构需求的不断增加,光刻技术的发展持续推动着芯片制造技术的进步。目前,芯片制造已经进入 纳米级别 ,光刻技术以其 高精度 高分辨率 的特性成为制造微小器件的主要工艺之一。从光刻机的精细化到光刻胶的创新,不断提升的技术为芯片制造的微细化提供了坚实基础。
随着半导体工艺的不断进步,芯片的尺寸和结构正朝着 更小、更精细 的方向发展。光刻技术以其高精度、高分辨率的特性,成为制造微小器件和电路的关键工艺之一。在过去数十年中,光刻技术在芯片制造中经历了许多重大的进展和创新。
第一个显著的进展是分辨率的提升。随着半导体制造的需求不断增加,光刻技术在分辨率和图案精度上取得了显著的进步。从迈入亚微米时代到纳米级制程,光刻技术一直在不断演进,逐步实现了对更小尺寸的器件制造。
其次,光刻机的升级和创新也对芯片制造的发展起到了重要作用。从 紫外线光刻到极紫外光刻(EUV) ,光刻机的技术革新使得更小尺寸的结构得以实现。EUV技术的商业化应用推动了半导体工业向更小尺寸制程的转变,为制造更多功能更复杂的芯片提供了可能。
此外, 光刻胶和掩模 等材料技术的不断创新也是促进光刻技术应用进展的重要因素。新型光刻胶的开发和改良,以及掩模制作工艺的提升,为更高性能和更高密度的芯片制造提供了支持。
3.2 其他行业中的光刻技术应用(如生物医学、光学等)
光刻技术的应用领域远不止于芯片制造。在生物医学领域,光刻技术被用于制造微流控芯片、生物传感器和微型生物芯片,用以研究和诊断疾病。在光学领域,光刻技术应用于制造光学元件、光纤和微型光学结构,提升了光学器件的性能和制造效率。这些领域的应用展示了光刻技术在多领域中的多样性和潜力。

生物医学领域:

微流控芯片制造 光刻技术被广泛应用于制造微流控芯片,这些芯片用于操控和分析微小流体中的生物分子。微流控芯片在药物研发、病毒检测、DNA分析等领域中发挥重要作用。
微型生物芯片 光刻技术帮助制造微型生物芯片,用于研究细胞行为、疾病检测和医学诊断。这些芯片可以帮助科学家更深入地了解疾病机制,并提供快速、精准的诊断方法。

光学领域:

光学元件制造 光刻技术用于制造光学元件,如透镜、光栅和微型光学结构。这些元件在激光技术、光通信、成像系统和光学传感器中发挥着关键作用。
光学纳米结构 光刻技术也被用于制造纳米级别的光学结构,例如纳米光子晶体和纳米表面结构,以改善光学器件的性能和特性,推动光学领域的创新。
这些领域中的光刻技术应用展示了其在微纳米制造以外的广泛潜力。光刻技术的高精度、高分辨率特性为这些领域带来了新的研究和应用机会,促进了医学诊断、生物学研究、光学传感等领域的发展。其不断的创新和应用将进一步推动这些领域的进步,并为未来的技术创新提供了坚实基础。
3.3 光刻技术在全球的发展现状与市场趋势
全球光刻技术市场在半导体和微纳米制造的需求推动下持续增长。特别是在5G、人工智能、物联网等领域的快速发展下,对更小、更快、更强芯片的需求不断增加,进一步拉动了光刻技术市场的增长。随着半导体工业的不断创新和需求的增加,光刻技术的发展和应用也将持续向前发展。

发展现状

极紫外光刻(EUV)技术商业化 :EUV技术被视为未来半导体工业制程的关键。近年来,EUV技术在芯片制造中取得了重大进展,商业化应用不断扩展。其高分辨率、更精细的图案制作能力使其成为当前半导体工艺的主要发展方向。

技术精密度提升 :随着芯片制造进入亚纳米和纳米级别,对于光刻技术的要求更加严苛。制程技术和设备工艺的精密度不断提高,以满足现代微电子器件对于精确性、可靠性和可重复性的要求。

新材料和工艺的研发 :为了适应更高级别的半导体工艺制造,新材料和工艺的研发成为光刻技术发展的重要方向。新型光刻胶、掩模材料以及改良的光刻机设备正在不断涌现,以支持新一代芯片的制造。

市场趋势

持续扩大的半导体市场 :随着数字化、智能化需求的不断增长,半导体市场持续扩大。尤其在5G、人工智能、物联网等领域的发展推动下,对高性能、高密度芯片的需求将持续增加,促进了光刻技术的发展和市场需求。

国际市场竞争激烈 :光刻技术的市场竞争日益激烈,主要供应商在技术研发和设备性能上展开激烈角逐。美国、欧洲和亚洲地区的企业在光刻技术领域竞争激烈,努力在全球市场上占据领先地位。

生态系统合作和发展 :半导体制造需要多个环节的协同合作,光刻技术作为其中重要一环,与其他工艺、设备制造商和材料供应商之间的合作愈发紧密。生态系统的合作和协同发展将是光刻技术未来发展的关键因素之一。

4. 当前光刻技术面临的挑战与解决方案

4.1 精度与分辨率的挑战

精度与分辨率挑战的细节:

微小尺度制造要求 :随着半导体行业向更小、更紧密的器件迈进,对于微小尺寸的器件制造提出了更高要求。 传统光刻技术的分辨率已接近极限,面临着难以跨越的瓶颈,无法满足亚纳米级制程的需求。
光学衍射限制 :光学衍射现象导致了光刻技术分辨率的局限。传统紫外光刻已经接近光学衍射极限,导致难以将图案缩小到更小的尺度,限制了器件的制造。
对多层次结构的需求 :现代芯片制造要求多层次、复杂结构的制造,传统光刻难以高效制造复杂多层次的器件结构,导致工艺复杂度和成本增加。

解决方案与技术进展:

极紫外光刻技术(EUV) :EUV技术被认为是突破传统紫外光刻分辨率限制的主要技术。EUV技术波长更短,能够产生更小尺寸的图案,提高了分辨率和精度,被广泛看好在未来芯片制造中的应用前景。
多重曝光与多道工序 :采用多重曝光、多道工序叠加等技术,通过多次曝光、图案叠加来增强分辨率,克服了传统光刻技术在分辨率上的限制,为微小结构制造提供了新的可能性。
混合制程与新工艺 :结合多种制程技术,如自组装、多层刻蚀、电子束刻蚀等,与光刻技术相结合,实现更高级别的微纳米制造,提升器件的精度和制造效率。
4.2 新材料与新工艺的应用

挑战与问题:

现有材料的局限性 :传统光刻技术所使用的光刻胶和掩模材料在制造超细微结构和多层次结构方面存在限制,难以适应日益复杂的器件要求。
制程成本与效率 :新材料的引入和新工艺的开发常常伴随着更高的成本和较低的制造效率。现有工艺可能无法承担这些成本并确保良好的产能。

解决方案与技术进展:

新型光刻材料 :针对超小尺度和复杂结构需求,研究开发更高分辨率、更耐用、更灵活的光刻胶和掩模材料。新材料如金属氧化物、高分子复合材料等正在得到关注和研究。
三维制造技术 :引入三维制造、立体堆叠工艺等技术,能够在多个维度上实现更多样化、更复杂的结构,满足器件设计上的多样化需求。
光刻技术与先进工艺结合 :结合光刻技术与先进工艺(如电子束曝光、离子束曝光等),实现更高精度、更多样化的图形转移和多层次结构制造,为新一代器件制造提供更多可能性。
环保型新材料开发 :研究开发对环境友好、可再利用、可降解的新型光刻材料,以减少对环境的影响,同时提高工艺的可持续性。
通过新材料和新工艺的研发,光刻技术能够更好地应对现代制造的挑战,满足对微纳米级制造的不断提升的需求。这些创新将为未来半导体和微纳米技术的发展提供重要支持,推动行业迈向更加先进和可持续的制造模式。
4.3 环境友好型光刻技术的发展
环境友好型光刻技术的发展是当今光刻技术领域的重要趋势之一。随着社会对可持续发展和环境保护的关注日益增强,工业界在寻求新技术时也越来越重视其对环境的影响。在光刻技术领域,环保型技术的发展主要集中在以下几个方面:

化学物质的替代与降解

环保光刻胶材料 :研究开发可降解、低污染的光刻胶材料,减少对环境的污染,降低光刻过程中的化学物质排放。
水基光刻工艺 :探索使用水基光刻胶及水溶性材料,减少有机溶剂的使用,降低挥发性有机化合物(VOCs)的排放。

能源消耗与废物处理

能源效率改善 :设备升级和工艺优化以降低能源消耗,比如采用高效光源和智能化控制系统。
废弃物管理 :开发高效的废物处理技术,将废弃的光刻胶及废液进行有效处理和回收,降低对环境的影响。

循环利用与绿色制程

资源循环利用 :探索光刻材料和设备的循环利用方案,减少资源消耗,增加设备和材料的使用寿命。
绿色制程标准 :制定和推行绿色光刻制程标准,引导行业朝着更环保的方向发展,鼓励企业实施更可持续的生产方式。

国际合作与政策支持

国际合作 :科研机构、企业和政府之间的国际合作,共同研发环保型光刻技术,分享最佳实践,推动环境友好型技术的发展和应用。
政策支持 :政府制定支持环保技术发展的政策,鼓励企业加大环保型技术研发投入,推动行业向绿色制造转型。
环保型光刻技术的发展不仅能降低光刻过程对环境的影响,同时也有助于行业的可持续发展。通过环保型技术的推广应用,光刻工艺将更加环保、高效,促进整个产业链的可持续发展。
5. 光刻技术的未来发展方向
5.1 下一代光刻技术(如极紫外光刻)的前景
极紫外光刻技术(EUV)作为下一代光刻技术备受瞩目,它采用波长更短的极紫外光来实现比传统紫外光刻更小尺寸的图案转移,为芯片制造带来了巨大潜力和革命性的改变。

技术优势和应用前景

提高分辨率和制造效率 EUV的极短波长(约13.5纳米)允许更高的分辨率,可制造出更小、更密集的芯片结构,有助于推动半导体行业向更高性能和更小尺寸的器件迈进。

降低多重曝光成本 :相较于传统的多重曝光工艺,EUV技术可以简化制程并降低成本,因为它能够在单次曝光中完成多层次图案的转移。

实现制程的微缩化 :EUV技术可以更精确地实现纳米级的微缩化,使得器件可以更接近理论极限,推动芯片制造的发展。

技术挑战和发展方向

光源功率和设备稳定性 :当前EUV技术中的光源功率和设备的稳定性是重要挑战,技术改进和创新努力致力于提高光源的亮度和设备的稳定性。

技术成本和复杂度 :EUV技术在设备制造、材料研发和工艺优化方面需要大量资金投入,而且技术的复杂性也对其商业化产生一定挑战。

全产业链的协同发展 :EUV技术的商业化需要整个产业链的协同发展和配套,包括材料、设备制造、工艺优化等方面的技术突破和合作。

市场前景与应用领域拓展

EUV technology has broad market prospects in the field of chip manufacturing and is expected to be widely used in high-performance computing, artificial intelligence, Internet of Things, 5G communications and other fields in the future. In addition to semiconductor manufacturing, EUV technology will also gradually expand to other industries, such as optical devices, biomedicine, and micro-nano structures, promoting technological progress and innovation in these fields.


5.2 Integration of lithography technology with emerging technologies such as artificial intelligence and quantum computing
The integration of lithography technology with emerging technologies such as artificial intelligence (AI) and quantum computing has brought unprecedented opportunities and innovation space to the manufacturing industry. This integration gives lithography technology greater flexibility, efficiency and precision, while also providing a broader range of applications and solutions.

Application of artificial intelligence in lithography technology

Process optimization and prediction : AI technology can analyze a large amount of process data, identify patterns and optimize process parameters through machine learning algorithms, improving the efficiency and stability of the lithography process. AI can also predict equipment failures and optimize equipment maintenance plans, improving equipment utilization and production efficiency.

Equipment intelligence and automation : The intelligence of lithography equipment can achieve automatic control and adaptability through AI algorithms, optimize process parameters and production scheduling, and improve the stability and reliability of the production line.

The combination of photolithography and quantum computing

Process simulation and optimization : Quantum computing can handle complex process simulations, accelerate the speed and accuracy of process optimization, and provide more accurate simulations and predictions for the lithography process.

Encryption and security : Quantum computing has unique advantages in encryption technology, which can provide a higher level of data encryption protection to ensure the security of sensitive data in the photolithography process.

Future development prospects

The convergence of lithography technology with AI and quantum computing will drive manufacturing forward. This integration is expected to optimize the manufacturing process, improve production efficiency and product quality, and provide technical support for the development of emerging fields (such as quantum computing chips, AI-based device manufacturing, etc.).
However, achieving this convergence requires interdisciplinary collaboration and sustained R&D investment. At the same time, privacy and security issues also need to be taken seriously to ensure that the application of technology does not bring potential security risks. In the future, this integration will continue to promote innovative development of lithography technology and manufacturing.
5.3 The role and impact of photolithography technology in future industries
When talking about the role and impact of lithography technology in future industries, in addition to the fields of semiconductor manufacturing, biomedicine and optical optoelectronics, there are other important fields:

New and Renewable Energy : Lithography plays a key role in solar cell manufacturing. Through precise pattern transfer and micron-scale processing, photolithography helps create efficient, low-cost solar modules. In addition, there are potential applications in the production of fuel cells, photocatalysts and other renewable energy technologies.

3D printing and micro-nano manufacturing : Photolithography technology is of great significance in the fields of 3D printing and micro-nano manufacturing. Through precise control of photolithography technology, micron-level structures and devices can be manufactured, promoting the development of micro-nano technology, and also supporting the fine manufacturing of 3D printing technology.

Smart Manufacturing and the Internet of Things : In smart manufacturing and the Internet of Things, photolithography technology is expected to be used to manufacture sensors, micro electronic components, and key components of smart devices. The fabrication of these components requires high-precision micro-nano processing, and photolithography can provide this high-precision manufacturing capability.

New materials and functional materials : The development of photolithography technology will also promote the development and manufacturing of new materials and functional materials. Through photolithography, materials can be precisely processed and customized at the microscopic scale to create materials with special properties, such as nanostructured materials and multifunctional films.

-END-


The content of this article is for communication and learning purposes only and does not constitute any investment advice. If you have any questions, please contact us at info@gsi24.com.


Highlights from past issues

Chip manufacturer sells jewelry and earns 1.2 billion a year!

Zhejiang University dominates mobile phone sales, earning 81.2 billion yuan in three and a half years

Domestic semiconductor IP and product layout at a glance!

Under the crazy involution, where is the way out for radio frequency chips?

25 pictures of China’s technology investment, looking for glimmers in the downturn




Latest articles about

 
EEWorld WeChat Subscription

 
EEWorld WeChat Service Number

 
AutoDevelopers

About Us Customer Service Contact Information Datasheet Sitemap LatestNews

Room 1530, Zhongguancun MOOC Times Building,Block B, 18 Zhongguancun Street, Haidian District,Beijing, China Tel:(010)82350740 Postcode:100190

Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved 京ICP证060456号 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号