Regarding MDK configuration, please see the previous article
How to light up the LED lamp with mini2440 bare metal program based on MDK4.11 version
http://hi.baidu.com/如来大悲/blog/item/c6150233be4692a45edf0e02.html
/**************************************************************
The initial and control for 640×480 16Bpp TFT LCD----VGA
**************************************************************/
#define rGPCCON (*(volatile unsigned *)0x56000020) //Port C control
#define rGPCDAT (*(volatile unsigned *)0x56000024) //Port C data
#define rGPCUP (*(volatile unsigned *)0x56000028) //Pull-up control C
#define rGPDCON (*(volatile unsigned *)0x56000030) //Port D control
#define rGPDDAT (*(volatile unsigned *)0x56000034) //Port D data
#define rGPDUP (*(volatile unsigned *)0x56000038) //Pull-up control D
#define rGPGCON (*(volatile unsigned *)0x56000060) //Port G control
#define rGPGDAT (*(volatile unsigned *)0x56000064) //Port G data
#define rGPGUP (*(volatile unsigned *)0x56000068) //Pull-up control G
// LCD CONTROLLER
#define rLCDCON1 (*(volatile unsigned *)0x4d000000) //LCD control 1
#define rLCDCON2 (*(volatile unsigned *)0x4d000004) //LCD control 2
#define rLCDCON3 (*(volatile unsigned *)0x4d000008) //LCD control 3
#define rLCDCON4 (*(volatile unsigned *)0x4d00000c) //LCD control 4
#define rLCDCON5 (*(volatile unsigned *)0x4d000010) //LCD control 5
#define rLCDSADDR1 (*(volatile unsigned *)0x4d000014) //STN/TFT Frame buffer start address 1
#define rLCDSADDR2 (*(volatile unsigned *)0x4d000018) //STN/TFT Frame buffer start address 2
#define rLCDSADDR3 (*(volatile unsigned *)0x4d00001c) //STN/TFT Virtual screen address set
#define rREDLUT (*(volatile unsigned *)0x4d000020) //STN Red lookup table
#define rGREENLUT (*(volatile unsigned *)0x4d000024) //STN Green lookup table
#define rBLUELUT (*(volatile unsigned *)0x4d000028) //STN Blue lookup table
#define rDITHMODE (*(volatile unsigned *)0x4d00004c) //STN Dithering mode
#define rTPAL (*(volatile unsigned *)0x4d000050) //TFT Temporary palette
#define rLCDINTPND (*(volatile unsigned *)0x4d000054) //LCD Interrupt pending
#define rLCDSRCPND (*(volatile unsigned *)0x4d000058) //LCD Interrupt source
#define rLCDINTMSK (*(volatile unsigned *)0x4d00005c) //LCD Interrupt mask
#define rTCONSEL (*(volatile unsigned *)0x4d000060) //LPC3600 Control --- edited by junon
#define PALETTE 0x4d000400 //Palette start address
#define U8 unsigned char
#define U16 unsigned short
#define U32 unsigned int
extern const unsigned char sunflower_240x320[];
#define LCD_WIDTH 240
#define LCD_HEIGHT 320
#define LCD_PIXCLOCK 4
#define LCD_RIGHT_MARGIN 36
#define LCD_LEFT_MARGIN 19
#define LCD_HSYNC_LEN 5
#define LCD_UPPER_MARGIN 1
#define LCD_LOWER_MARGIN 5
#define LCD_VSYNC_LEN 1
#define LCD_XSIZE LCD_WIDTH
#define LCD_YSIZE LCD_HEIGHT
#define SCR_XSIZE LCD_WIDTH
#define SCR_YSIZE LCD_HEIGHT
unsigned short LCD_BUFFER[SCR_YSIZE][SCR_XSIZE];
/**************************************************************
640×480 TFT LCD data and control port initialization
**************************************************************/
static void Lcd_Port_Init( void )
{
rGPCUP=0xffffffff; // Disable Pull-up register
rGPCCON=0xaaaa02a8; //Initialize VD[7:0],VM,VFRAME,VLINE,VCLK
rGPDUP=0xffffffff; // Disable Pull-up register
rGPDCON=0xaaaaaaaa; //Initialize VD[15:8]
}
/**************************************************************
640×480 TFT LCD功能模块初始化
**************************************************************/
static void LCD_Init(void)
{
#define M5D(n) ((n)&0x1fffff)
#define LCD_ADDR ((U32)LCD_BUFFER)
rLCDCON1 = (LCD_PIXCLOCK << 8) | (3 << 5) | (12 << 1);
rLCDCON2 = (LCD_UPPER_MARGIN << 24) | ((LCD_HEIGHT - 1) << 14) | (LCD_LOWER_MARGIN << 6) | (LCD_VSYNC_LEN << 0);
rLCDCON3 = (LCD_RIGHT_MARGIN << 19) | ((LCD_WIDTH - 1) << 8) | (LCD_LEFT_MARGIN << 0);
rLCDCON4 = (13 << 8) | (LCD_HSYNC_LEN << 0);
#if !defined(LCD_CON5)
# define LCD_CON5 ((1<<11) | (1 << 9) | (1 << 8) | (1 << 3) | (1 << 0))
#endif
rLCDCON5 = LCD_CON5;
rLCDSADDR1 = ((LCD_ADDR >> 22) << 21) | ((M5D(LCD_ADDR >> 1)) << 0);
rLCDSADDR2 = M5D((LCD_ADDR + LCD_WIDTH * LCD_HEIGHT * 2) >> 1);
rLCDSADDR3 = LCD_WIDTH;
rLCDINTMSK |= 3;
rTCONSEL &= (~7);
rTPAL = 0x0;
rTCONSEL &= ~((1<<4) | 1);
}
/******************************************************************
LCD video and control signal output or stop, 1 to turn on video output
**************************************************************/
static void Lcd_EnvidOnOff(int onoff)
{
if(onoff==1)
rLCDCON1|=1; // ENVID=ON
else
rLCDCON1 =rLCDCON1 & 0x3fffe; // ENVID Off
}
/**************************************************************
320×240 8Bpp TFT LCD 电源控制引脚使能
**************************************************************/
static void Lcd_PowerEnable(int invpwren,int pwren)
{
//GPG4 is setted as LCD_PWREN
rGPGUP = rGPGUP|(1<<4); // Pull-up disable
rGPGCON = rGPGCON|(3<<8); //GPG4=LCD_PWREN
//Enable LCD POWER ENABLE Function
rLCDCON5 = rLCDCON5&(~(1<<3))|(pwren<<3); // PWREN
rLCDCON5 = rLCDCON5&(~(1<<5))|(invpwren<<5); // INVPWREN
}
/******************************************************************
640×480 TFT LCD single pixel display data output
***********************************************************/
static void PutPixel(U32 x,U32 y,U16 c)
{
if(x
}
/**************************************************************
640×480 TFT LCD full screen fills specific color units or clears the screen
***********************************************************/
static void Lcd_ClearScr( U16 c)
{
unsigned int x,y ;
for( y = 0 ; y < SCR_YSIZE ; y++ )
{
for( x = 0 ; x < SCR_XSIZE ; x++ )
{
LCD_BUFFER[y][x] = c ;
}
}
}
/**************************************************************
LCD屏幕显示垂直翻转
// LCD display is flipped vertically
// But, think the algorithm by mathematics point.
// 3I2
// 4 I 1
// --+-- <-8 octants mathematical cordinate
// 5 I 8
// 6I7
**************************************************************/
static void Glib_Line(int x1,int y1,int x2,int y2, U16 color)
{
int dx,dy,e;
dx=x2-x1;
dy=y2-y1;
if(dx>=0)
{
if(dy >= 0) // dy>=0
{
if(dx>=dy) // 1/8 octant
{
e=dy-dx/2;
while(x1<=x2)
{
PutPixel(x1,y1,color);
if(e>0){y1+=1;e-=dx;}
x1+=1;
e+=dy;
}
}
else // 2/8 octant
{
e=dx-dy/2;
while(y1<=y2)
{
PutPixel(x1,y1,color);
if(e>0){x1+=1;e-=dy;}
y1+=1;
e+=dx;
}
}
}
else // dy<0
{
dy=-dy; // dy=abs(dy)
if(dx>=dy) // 8/8 octant
{
e=dy-dx/2;
while(x1<=x2)
{
PutPixel(x1,y1,color);
if(e>0){y1-=1;e-=dx;}
x1+=1;
e+=dy;
}
}
else // 7/8 octant
{
e=dx-dy/2;
while(y1>=y2)
{
PutPixel(x1,y1,color);
if(e>0){x1+=1;e-=dy;}
y1-=1;
e+=dx;
}
}
}
}
else //dx<0
{
dx=-dx; //dx=abs(dx)
if(dy >= 0) // dy>=0
{
if(dx>=dy) // 4/8 octant
{
e=dy-dx/2;
while(x1>=x2)
{
PutPixel(x1,y1,color);
if(e>0){y1+=1;e-=dx;}
x1-=1;
e+=dy;
}
}
else // 3/8 octant
{
e=dx-dy/2;
while(y1<=y2)
{
PutPixel(x1,y1,color);
if(e>0){x1-=1;e-=dy;}
y1+=1;
e+=dx;
}
}
}
else // dy<0
{
dy=-dy; // dy=abs(dy)
if(dx>=dy) // 5/8 octant
{
e=dy-dx/2;
while(x1>=x2)
{
PutPixel(x1,y1,color);
if(e>0){y1-=1;e-=dx;}
x1-=1;
e+=dy;
}
}
else // 6/8 octant
{
e=dx-dy/2;
while(y1>=y2)
{
PutPixel(x1,y1,color);
if(e>0){x1-=1;e-=dy;}
y1-=1;
e+=dx;
}
}
}
}
}
/******************************************************************
Fill a rectangle with color on the LCD screen
***********************************************************/
static void Glib_FilledRectangle(int x1,int y1,int x2,int y2, U16 color)
{
int i;
for(i=y1;i<=y2;i++)
Glib_Line(x1,i,x2,i,color);
}
/******************************************************************
Draw a picture of a specified size at the specified coordinate point on the LCD screen
***********************************************************/
static void Paint_Bmp(int x0,int y0,int h,int l,const unsigned char *bmp)
{
int x,y;
U32 c;
int p = 0;
for( y = 0 ; y < l ; y++ )
{
for( x = 0 ; x < h ; x++ )
{
c = bmp[p+1] | (bmp[p]<<8) ;
if ( ( (x0+x) < SCR_XSIZE) && ( (y0+y) < SCR_YSIZE) )
LCD_BUFFER[y0+y][x0+x] = c ;
p = p + 2 ;
}
}
}
/**************************************************************
**************************************************************/
void TFT_LCD_Init(void)
{
Lcd_Port_Init();
LCD_Init();
//LcdBkLtSet( 70 ) ;
Lcd_PowerEnable(0, 1);
Lcd_EnvidOnOff(1); //turn on vedio
Lcd_ClearScr( (0x00<<11) | (0x00<<5) | (0x00) );
Glib_FilledRectangle(0,0,240,320,0xffff);//Display a rectangle on the full screen
Paint_Bmp(0, 0, 240, 320, sunflower_240x320);//Display an image
}
int main()
{
TFT_LCD_Init();
}
//main.c(343): warning: #1-D: last line of file ends without a newline
//MDK likes to add a blank line at the end, otherwise a warning message will appear.
Previous article:LCD of mini2440 bare machine
Next article:S3C2440 bare metal learning [2] - LCD driver principle and code analysis [I]
- Popular Resources
- Popular amplifiers
- Learn ARM development(16)
- Learn ARM development(17)
- Learn ARM development(18)
- Embedded system debugging simulation tool
- A small question that has been bothering me recently has finally been solved~~
- Learn ARM development (1)
- Learn ARM development (2)
- Learn ARM development (4)
- Learn ARM development (6)
Professor at Beihang University, dedicated to promoting microcontrollers and embedded systems for over 20 years.
- LED chemical incompatibility test to see which chemicals LEDs can be used with
- Application of ARM9 hardware coprocessor on WinCE embedded motherboard
- What are the key points for selecting rotor flowmeter?
- LM317 high power charger circuit
- A brief analysis of Embest's application and development of embedded medical devices
- Single-phase RC protection circuit
- stm32 PVD programmable voltage monitor
- Introduction and measurement of edge trigger and level trigger of 51 single chip microcomputer
- Improved design of Linux system software shell protection technology
- What to do if the ABB robot protection device stops
- CGD and Qorvo to jointly revolutionize motor control solutions
- CGD and Qorvo to jointly revolutionize motor control solutions
- Keysight Technologies FieldFox handheld analyzer with VDI spread spectrum module to achieve millimeter wave analysis function
- Infineon's PASCO2V15 XENSIV PAS CO2 5V Sensor Now Available at Mouser for Accurate CO2 Level Measurement
- Advanced gameplay, Harting takes your PCB board connection to a new level!
- Advanced gameplay, Harting takes your PCB board connection to a new level!
- A new chapter in Great Wall Motors R&D: solid-state battery technology leads the future
- Naxin Micro provides full-scenario GaN driver IC solutions
- Interpreting Huawei’s new solid-state battery patent, will it challenge CATL in 2030?
- Are pure electric/plug-in hybrid vehicles going crazy? A Chinese company has launched the world's first -40℃ dischargeable hybrid battery that is not afraid of cold
- Unboxing Review (Part 3) Preliminary Understanding
- (Awards have been awarded) "Say hello" and get a gift: Comparing stm32cubemx, let's get to know the domestically produced Fudan Micro Cube MFANG
- STM32F10 Chinese reference material
- Showing my products + my development board
- The relationship between instruction set architecture, arm core, SoC, processor, CPU, GPU, etc.
- [Raspberry Pi 4B Review] + Unboxing
- There are two types of switch circuits, such as MOS+transistor+diode+button and switch circuits with MCU IO port directly connected to the button...
- I3C standard information, sharing
- Bluetooth Low Energy GAP, GATT
- Summary of Common/Uncommon IOT Protocols