Generative AI has set off a craze in the technology industry. It takes only microseconds to understand context and complete tasks such as translation and summarization with astonishing accuracy, fully demonstrating its extraordinary potential to profoundly change business processes.
Have you ever thought about what technology is used to implement generative AI such as ChatGPT and Google Bard? Semiconductor technologies such as DDR5, HBM, GDDR and PCI Express® are critical to the training and deployment of generative AI.
As generative AI expands to the edge and is increasingly deployed to client systems and smart devices, security will become another fundamental requirement. In order to protect the security of AI data and assets, the security of the hardware must first be ensured.
Previous article:Cornell develops 3D reflectors to provide better latency components for 6G networks
Next article:Microsoft reaches out-of-court settlement with Caltech over Wi-Fi patent dispute
- Popular Resources
- Popular amplifiers
- Keysight Technologies FieldFox handheld analyzer with VDI spread spectrum module to achieve millimeter wave analysis function
- Qualcomm launches its first RISC-V architecture programmable connectivity module QCC74xM, supporting Wi-Fi 6 and other protocols
- Microchip Launches Broadest Portfolio of IGBT 7 Power Devices Designed for Sustainable Development, E-Mobility and Data Center Applications
- Infineon Technologies Launches New High-Performance Microcontroller AURIX™ TC4Dx
- Rambus Announces Industry’s First HBM4 Controller IP to Accelerate Next-Generation AI Workloads
- NXP FRDM platform promotes wireless connectivity
- WPG Group launches Wi-Fi 7 home gateway solution based on Qualcomm products
- Exclusive interview with Silicon Labs: In-depth discussion on the future development trend of Bluetooth 6.0
- Works With Online Developer Conference is about to start, experience the essence of global activities online
- LED chemical incompatibility test to see which chemicals LEDs can be used with
- Application of ARM9 hardware coprocessor on WinCE embedded motherboard
- What are the key points for selecting rotor flowmeter?
- LM317 high power charger circuit
- A brief analysis of Embest's application and development of embedded medical devices
- Single-phase RC protection circuit
- stm32 PVD programmable voltage monitor
- Introduction and measurement of edge trigger and level trigger of 51 single chip microcomputer
- Improved design of Linux system software shell protection technology
- What to do if the ABB robot protection device stops
- Detailed explanation of intelligent car body perception system
- How to solve the problem that the servo drive is not enabled
- Why does the servo drive not power on?
- What point should I connect to when the servo is turned on?
- How to turn on the internal enable of Panasonic servo drive?
- What is the rigidity setting of Panasonic servo drive?
- How to change the inertia ratio of Panasonic servo drive
- What is the inertia ratio of the servo motor?
- Is it better for the motor to have a large or small moment of inertia?
- What is the difference between low inertia and high inertia of servo motors?
- Circuit analysis, please help me
- bq4050 protection recovery problem
- Reflections and how to handle them in high-speed systems
- Repairing PCB without drawings, this article is enough
- [Fudan Micro FM33LC046N] PACK package also limits the MDK version?
- Can stm32f407 be used as a USB host to receive serial port data?
- uLisp, a Lisp language for embedded systems
- SensorTile.box firmware upgrade first experience
- EPLAN P8 Advanced Tutorial (Chinese)
- [ESP32-Audio-Kit Audio Development Board Review] Part 3 play_mp3_control