A switched-capacitor voltage inverter configured as a "rail splitter" (IC1 in Figure 1) provides a bipolar (dual-rail) local power supply that is useful in single-rail systems featuring one or more dual-rail ICs. Moreover, the tiny SOT-23 package and associated components require very little board area.
Figure 1. This compact and efficient charge-pump circuit implements a local dual-rail supply for single-rail systems.
After power is applied, the flying capacitor (C2) connects alternately across the storage capacitors C3/C4 and C5/C6. This action equalizes the voltages on those capacitors and draws current from VIN or VOUT as required to maintain VOUT ≈ ½VIN.
If the loads across VIN-VOUT and VOUT-0V are equal, the IC sits in a quiescent state and draws about 36µA. To keep VOUT at the mid-rail level, the flying capacitor needs only to supply the difference current caused by unbalanced loads. Efficiency is degraded by the IC's quiescent current for load currents below 100µA, but above 1mA the efficiency is greater than 90%—an excellent feature for low-power or battery-powered applications. (Voltage error and efficiency vary with the load current, as shown in Figures 2 and 3.)
Figure 2. The output voltage error in Figure 1 increases with load current.
Figure 3. Efficiency also increases with load current in Figure 1.
This switched-capacitor circuit provides better regulation than that of a simple voltage divider, and better efficiency than that of a simple combination of divider and op-amp buffer. Its main drawback is the increase in output noise with load (see Table 1). VIN is restricted (by the IC specifications) to a maximum of 5.5V, which is the maximum voltage allowed between pins 2 and 4 or between pins 1 and 4.
A similar idea appeared in the August 1, 1997 issue of EDN.
Reference address:Voltage-Inverter Integrated Circuit High Efficiency Orbiter
Figure 1. This compact and efficient charge-pump circuit implements a local dual-rail supply for single-rail systems.
After power is applied, the flying capacitor (C2) connects alternately across the storage capacitors C3/C4 and C5/C6. This action equalizes the voltages on those capacitors and draws current from VIN or VOUT as required to maintain VOUT ≈ ½VIN.
If the loads across VIN-VOUT and VOUT-0V are equal, the IC sits in a quiescent state and draws about 36µA. To keep VOUT at the mid-rail level, the flying capacitor needs only to supply the difference current caused by unbalanced loads. Efficiency is degraded by the IC's quiescent current for load currents below 100µA, but above 1mA the efficiency is greater than 90%—an excellent feature for low-power or battery-powered applications. (Voltage error and efficiency vary with the load current, as shown in Figures 2 and 3.)
Figure 2. The output voltage error in Figure 1 increases with load current.
Figure 3. Efficiency also increases with load current in Figure 1.
This switched-capacitor circuit provides better regulation than that of a simple voltage divider, and better efficiency than that of a simple combination of divider and op-amp buffer. Its main drawback is the increase in output noise with load (see Table 1). VIN is restricted (by the IC specifications) to a maximum of 5.5V, which is the maximum voltage allowed between pins 2 and 4 or between pins 1 and 4.
RLOAD
(Ω) |
INPUT CURRENT
(µA) |
VOUT
ERROR (mV) |
OUTPUT
CURRENT (µA) |
RIPPLE
(mVP-P) |
EFFICIENCY
(%) |
∞ | 36.5 | — | — | — | — |
10M | 36.5 | — | 0.25 | — | 0.34 |
10M | 37.7 | — | 2.5 | — | 3.32 |
100k | 48.9 | 0.1 | 25 | — | 25.56 |
10k | 156 | 1.4 | 250 | ~1 | 80.04 |
1k | 1240 | 13.5 | 2490 | ~5 | 99.72 |
470 | 2630 | 28.5 | 5260 | ~8 | 98.83 |
100 | 11,410 | 126.9 | 23,700 | ~30 | 98.71 |
A similar idea appeared in the August 1, 1997 issue of EDN.
Previous article:High-Efficiency Boost Converter Provides 48V for IP Phones
Next article:The difference between sine and modified inverters
- Popular Resources
- Popular amplifiers
Latest Analog Electronics Articles
- High signal-to-noise ratio MEMS microphone drives artificial intelligence interaction
- Advantages of using a differential-to-single-ended RF amplifier in a transmit signal chain design
- ON Semiconductor CEO Appears at Munich Electronica Show and Launches Treo Platform
- ON Semiconductor Launches Industry-Leading Analog and Mixed-Signal Platform
- Analog Devices ADAQ7767-1 μModule DAQ Solution for Rapid Development of Precision Data Acquisition Systems Now Available at Mouser
- Domestic high-precision, high-speed ADC chips are on the rise
- Microcontrollers that combine Hi-Fi, intelligence and USB multi-channel features – ushering in a new era of digital audio
- Using capacitive PGA, Naxin Micro launches high-precision multi-channel 24/16-bit Δ-Σ ADC
- Fully Differential Amplifier Provides High Voltage, Low Noise Signals for Precision Data Acquisition Signal Chain
MoreSelected Circuit Diagrams
MorePopular Articles
- Innolux's intelligent steer-by-wire solution makes cars smarter and safer
- 8051 MCU - Parity Check
- How to efficiently balance the sensitivity of tactile sensing interfaces
- What should I do if the servo motor shakes? What causes the servo motor to shake quickly?
- 【Brushless Motor】Analysis of three-phase BLDC motor and sharing of two popular development boards
- Midea Industrial Technology's subsidiaries Clou Electronics and Hekang New Energy jointly appeared at the Munich Battery Energy Storage Exhibition and Solar Energy Exhibition
- Guoxin Sichen | Application of ferroelectric memory PB85RS2MC in power battery management, with a capacity of 2M
- Analysis of common faults of frequency converter
- In a head-on competition with Qualcomm, what kind of cockpit products has Intel come up with?
- Dalian Rongke's all-vanadium liquid flow battery energy storage equipment industrialization project has entered the sprint stage before production
MoreDaily News
- Allegro MicroSystems Introduces Advanced Magnetic and Inductive Position Sensing Solutions at Electronica 2024
- Car key in the left hand, liveness detection radar in the right hand, UWB is imperative for cars!
- After a decade of rapid development, domestic CIS has entered the market
- Aegis Dagger Battery + Thor EM-i Super Hybrid, Geely New Energy has thrown out two "king bombs"
- A brief discussion on functional safety - fault, error, and failure
- In the smart car 2.0 cycle, these core industry chains are facing major opportunities!
- The United States and Japan are developing new batteries. CATL faces challenges? How should China's new energy battery industry respond?
- Murata launches high-precision 6-axis inertial sensor for automobiles
- Ford patents pre-charge alarm to help save costs and respond to emergencies
- New real-time microcontroller system from Texas Instruments enables smarter processing in automotive and industrial applications
Guess you like
- [Xianji HPM6750 Review 10] Drawing a multi-function expansion board and verification
- About the distance of infrared obstacle avoidance circuit
- Repost - Tesla battery violent disassembly video
- Relationship between transformer and inductor
- How to port uCOS-II to LPC17XX
- X-NUCLEO-IKS01A3 sensor driver transplantation based on NUCLEO-L011K4
- Standard EIA RS-198
- TMS320C6678 power-on configuration and FPGA reset DSP
- IEC 61000-4-5 Phases of three-phase power supply systems
- [Chuanglong TLA40i-EVM development board] +04.USB-Camera test-abnormal (zmj)