Downed Model Locator Circuit
If you know people who fly slope gliders frequently, you probably know someone who has lost a glider in the weeds or bushes. Here is a circuit I've shamelessly swiped from George Steiner's book "A to Z - Radio Control Electronic Journal" that may help you find your glider. I modified the circuit to use parts currently available at your local Radio Shack store, and modified it to decrease false triggering from low voltage spikes in the on-board power system when full sized or higher torque servos are used.
Your transmitter sends a set of pulses to your receiver every 20 milliseconds, and your receiver in turn sends an individual pulse to each of your servos at the same interval. This circuit is a pulse omission detector--an alarm sounds when the pulses, originating from your transmitter, are no longer present. By plugging this circuit into an unused servo socket on your receiver, you can turn on the alarm by turning off your transmitter.
The first capacitor C1 filters out DC voltage, preventing an aggressive automatic gain control of some current receivers from shutting off the alarm even when your transmitter is off. The first transistor Q1 serves to flip the pulse to negative modulation that the 555 needs. The C2 capacitor and the R4 resistor establish the time interval--if no pulse is received in the time it takes to charge the capacitor through the resistor, the alarm sounds. The interval is the resistance multiplied by the capacitance: 1uF x 47k = 0.000001F x 47000 ohms = 0.047sec = 47msec which is a little over twice the standard 20msec R/C frame rate--this device uses a little longer interval than the frame rate to prevent false triggering. The other capacitor C3 smoothes the control voltage on the 555, preventing false triggering from spikes in the supply voltage. Unless a pulse opens the Q2 transistor to drain the C2 capacitor before the capacitor is fully charged, the pin 6 threshold senses a high voltage and triggers the output pin 3 to go low, sinking current across the buzzer and making noise. With the reset pin 4 high, the discharge pin 7 drains the capacitor, and the cycle starts again.
The circuit draws 1mA (!) when idle and 4 mA when buzzing. I've been using large peizo buzzers (see part numbers below) because they are light and loud, and the 6 volt electromagnetic buzzer where weight is not so much of a concern.
The circuit uses your receiver battery for power. For the ultimate in reliability, you can use an additional battery to supply the alarm as follows. Connect only signal and negative leads to your receiver socket, and connect the second battery positive to positive circuit lead and negative to negative circuit lead. You will need to put some kind of switch in series with the second battery to keep it from running the alarm when you are not flying. With the extra battery, you will still be able to find your plane if your plane went down because of a receiver battery failure, or if your receiver battery fell out in the crash. You can use a nine volt battery for this, but be careful to NOT connect the nine volt battery to your receiver--or you will smoke your receiver. Note: Do NOT solder to a button battery--they explode.
Here are few Radio Shack parts numbers. You can substitute other types of capacitors; tantalum capacitors are just physically smaller. Polarity of the tantalum capacitor probably does not matter at this low voltage (compared to the rated maximum voltage), but to be particular, the positive lead would be directed toward the input signal lead and away from the negative side. Power in this circuit is minimal and you can use the smallest resistors you can get your hands on (get 1/8 watt if you can, but any power rating will work).
273-065 peizo buzzer $2.99 273-054 electric buzzer $2.59 276-1604 2N3906-type PNP transistors, 15 per $2.29 276-2016 2N3904 NPN transistor $0.59 276-1723 LM555 timer IC $1.29 272-1434 1uF tantalum capacitor $0.59 271-xxx 1/4 watt resistors (10k, 47k, 4.7k, 5 per) $0.49 George Steiner's book, crammed with cool R/C radio info, can be had for $19.95 postage paid from the following:
Previous article:Programming scheme of digital temperature sensor DS18B20
Next article:Scientists develop biochip sensor to detect H1N1 virus
- Popular Resources
- Popular amplifiers
- High signal-to-noise ratio MEMS microphone drives artificial intelligence interaction
- Advantages of using a differential-to-single-ended RF amplifier in a transmit signal chain design
- ON Semiconductor CEO Appears at Munich Electronica Show and Launches Treo Platform
- ON Semiconductor Launches Industry-Leading Analog and Mixed-Signal Platform
- Analog Devices ADAQ7767-1 μModule DAQ Solution for Rapid Development of Precision Data Acquisition Systems Now Available at Mouser
- Domestic high-precision, high-speed ADC chips are on the rise
- Microcontrollers that combine Hi-Fi, intelligence and USB multi-channel features – ushering in a new era of digital audio
- Using capacitive PGA, Naxin Micro launches high-precision multi-channel 24/16-bit Δ-Σ ADC
- Fully Differential Amplifier Provides High Voltage, Low Noise Signals for Precision Data Acquisition Signal Chain
- Innolux's intelligent steer-by-wire solution makes cars smarter and safer
- 8051 MCU - Parity Check
- How to efficiently balance the sensitivity of tactile sensing interfaces
- What should I do if the servo motor shakes? What causes the servo motor to shake quickly?
- 【Brushless Motor】Analysis of three-phase BLDC motor and sharing of two popular development boards
- Midea Industrial Technology's subsidiaries Clou Electronics and Hekang New Energy jointly appeared at the Munich Battery Energy Storage Exhibition and Solar Energy Exhibition
- Guoxin Sichen | Application of ferroelectric memory PB85RS2MC in power battery management, with a capacity of 2M
- Analysis of common faults of frequency converter
- In a head-on competition with Qualcomm, what kind of cockpit products has Intel come up with?
- Dalian Rongke's all-vanadium liquid flow battery energy storage equipment industrialization project has entered the sprint stage before production
- Allegro MicroSystems Introduces Advanced Magnetic and Inductive Position Sensing Solutions at Electronica 2024
- Car key in the left hand, liveness detection radar in the right hand, UWB is imperative for cars!
- After a decade of rapid development, domestic CIS has entered the market
- Aegis Dagger Battery + Thor EM-i Super Hybrid, Geely New Energy has thrown out two "king bombs"
- A brief discussion on functional safety - fault, error, and failure
- In the smart car 2.0 cycle, these core industry chains are facing major opportunities!
- The United States and Japan are developing new batteries. CATL faces challenges? How should China's new energy battery industry respond?
- Murata launches high-precision 6-axis inertial sensor for automobiles
- Ford patents pre-charge alarm to help save costs and respond to emergencies
- New real-time microcontroller system from Texas Instruments enables smarter processing in automotive and industrial applications
- How to solve the problem of buzzing sound when converting non-isolated 220v to 3.3v inductor
- Summary of configuring 5409's McBSP as an SPI port
- EEWORLD University - Simplifying Digital Power Supply
- Excuse me, what is this component with silk screen 6023?
- Analysis of the working principles of seven types of three-pole emitter DC circuits (updated)
- Design and implementation of FIR filter in DSP
- Some Allegro practical skills that PCB Layout engineers regret not knowing earlier
- Buck-Boost and Step-Up Converters in Wireless Security Cameras and Video Doorbells
- EEWORLD University Hall----Operating System Zhejiang University (Li Shanping)
- TI CapTIvate technology adds capacitive touch capabilities to stoves