Physical picture of the perpetual calendar:
The schematic diagram of the electronic perpetual calendar is as follows:
The simulation schematic diagram is as follows
The microcontroller source program is as follows:
#include //#include"DS18B20_3.H" #include #include #define uint unsigned int #define uchar unsigned char #define wd 1 //define whether there is temperature function =0 when there is no temperature, =1 when there is temperature #define yh 0x80 //The initial position of the first line of LCD, because the first character address D7 of LCD1602 is always 1 (100000000=80) #define er 0x80+0x40 //LCD second line initial position (because the first character position address of the second line is 0x40) //Pin connection definition between LCD screen and C51 (display data line connected to C51 P0 port) sbit en=P2^7; sbit rw=P2^6; //If rw is grounded in hardware, you don't need to write this sentence and the following rw=0 sbit rs=P2^5; //Definition of connection between the timing button and C51 pin sbit set=P3^0; //Set key sbit add=P3^1; //Add key sbit dec=P3^2; //Decrement key sbit seeNL_NZ=P3^3; //Check the lunar calendar/alarm clock sbit DQ=P3^7; // sbit buzzer=P2^0; //Buzzer, driven by transistor 8550, port low level rings sbit led=P2^4; //LCD backlight switch bit led1=1; bit ZDK=1,NZK=1; //Hourly time signal, alarm switch control bit =0, off, =1, on bit zdkg=0,nzkg=0; unsigned char temp_miao; unsigned char bltime; //Backlight on time //Pin connection definition between DS1302 clock chip and C51 sbit IO=P1^1; sbit SCLK=P1^0; sbit RST=P1^2; uchar a,miao,shi,fen,ri,yue,nian,week,setn,temp; uint flag; //flag is used to read the temperature value in the header file and display the temperature value bit c_moon; uchar nz_shi=12,nz_fen=0,nz_miao=0,setNZn; //define alarm clock variables uchar shangyimiao,bsn,temp_hour; //Record the last second uchar T_NL_NZ; //Counter bit timeron=0; //Alarm enable flag bit baoshi=0; //Hourly time flag bit p_r=0; // Normal year/rainy year =0 displays normal year, =1 displays rainy year data uchar year_moon,month_moon,day_moon,week; sbit ACC0=ACC^0; sbit ACC7=ACC^7; /************************************************************ ACC accumulator = A ACC.0=E0H ACC.0 is the 0th bit of ACC. Acc is bit addressable. The accumulator ACC is an 8-bit storage unit used to store data. However, this storage unit has a special status. It is a very critical unit in the microcontroller. Many operations must be performed through ACC. A is often used to represent the accumulator. However, there are some exceptions, such as in the PUSH instruction, which must use the name ACC. Generally speaking, A represents the contents of the accumulator, and ACC represents the address of the accumulator. ***************************************************************/ //********Gregorian calendar to lunar calendar table************************************ code uchar year_code[597]={ 0x04,0xAe,0x53, //1901 0 0x0A,0x57,0x48, //1902 3 0x55,0x26,0xBd, //1903 6 0x0d,0x26,0x50, //1904 9 0x0d,0x95,0x44, //1905 12 0x46,0xAA,0xB9, //1906 15 0x05,0x6A,0x4d, //1907 18 0x09,0xAd,0x42, //1908 21 0x24,0xAe,0xB6, //1909 0x04,0xAe,0x4A, //1910 0x6A,0x4d,0xBe, //1911 0x0A,0x4d,0x52, //1912 0x0d,0x25,0x46, //1913 0x5d,0x52,0xBA, //1914 0x0B,0x54,0x4e, //1915 0x0d,0x6A,0x43, //1916 0x29,0x6d,0x37, //1917 0x09,0x5B,0x4B, //1918 0x74,0x9B,0xC1, //1919 0x04,0x97,0x54, //1920 0x0A,0x4B,0x48, //1921 0x5B,0x25,0xBC, //1922 0x06,0xA5,0x50, //1923 0x06,0xd4,0x45, //1924 0x4A,0xdA,0xB8, //1925 0x02,0xB6,0x4d, //1926 0x09,0x57,0x42, //1927 0x24,0x97,0xB7, //1928 0x04,0x97,0x4A, //1929 0x66,0x4B,0x3e, //1930 0x0d,0x4A,0x51, //1931 0x0e,0xA5,0x46, //1932 0x56,0xd4,0xBA, //1933 0x05,0xAd,0x4e, //1934 0x02,0xB6,0x44, //1935 0x39,0x37,0x38, //1936 0x09,0x2e,0x4B, //1937 0x7C,0x96,0xBf, //1938 0x0C,0x95,0x53, //1939 0x0d,0x4A,0x48, //1940 0x6d,0xA5,0x3B, //1941 0x0B,0x55,0x4f, //1942 0x05,0x6A,0x45, //1943 0x4A,0xAd,0xB9, //1944 0x02,0x5d,0x4d, //1945 0x09,0x2d,0x42, //1946 0x2C,0x95,0xB6, //1947 0x0A,0x95,0x4A, //1948 0x7B,0x4A,0xBd, //1949 0x06,0xCA,0x51, //1950 0x0B,0x55,0x46, //1951 0x55,0x5A,0xBB, //1952 0x04,0xdA,0x4e, //1953 0x0A,0x5B,0x43, //1954 0x35,0x2B,0xB8, //1955 0x05,0x2B,0x4C, //1956 0x8A,0x95,0x3f, //1957 0x0e,0x95,0x52, //1958 0x06,0xAA,0x48, //1959 0x7A,0xd5,0x3C, //1960 0x0A,0xB5,0x4f, //1961 0x04,0xB6,0x45, //1962 0x4A,0x57,0x39, //1963 0x0A,0x57,0x4d, //1964 0x05,0x26,0x42, //1965 0x3e,0x93,0x35, //1966 0x0d,0x95,0x49, //1967 0x75,0xAA,0xBe, //1968 0x05,0x6A,0x51, //1969 0x09,0x6d,0x46, //1970 0x54,0xAe,0xBB, //1971 0x04,0xAd,0x4f, //1972 0x0A,0x4d,0x43, //1973 0x4d,0x26,0xB7, //1974 0x0d,0x25,0x4B, //1975 0x8d,0x52,0xBf, //1976 0x0B,0x54,0x52, //1977 0x0B,0x6A,0x47, //1978 0x69,0x6d,0x3C, //1979 0x09,0x5B,0x50, //1980 0x04,0x9B,0x45, //1981 0x4A,0x4B,0xB9, //1982 0x0A,0x4B,0x4d, //1983 0xAB,0x25,0xC2, //1984 0x06,0xA5,0x54, //1985 0x06,0xd4,0x49, //1986 0x6A,0xdA,0x3d, //1987 0x0A,0xB6,0x51, //1988 0x09,0x37,0x46, //1989 0x54,0x97,0xBB, //1990 0x04,0x97,0x4f, //1991 0x06,0x4B,0x44, //1992 0x36,0xA5,0x37, //1993 0x0e,0xA5,0x4A, //1994 0x86,0xB2,0xBf, //1995 0x05,0xAC,0x53, //1996 0x0A,0xB6,0x47, //1997 0x59,0x36,0xBC, //1998 0x09,0x2e,0x50, //1999 294 0x0C,0x96,0x45, //2000 297 0x4d,0x4A,0xB8, //2001 0x0d,0x4A,0x4C, //2002 0x0d,0xA5,0x41, //2003 0x25,0xAA,0xB6, //2004 0x05,0x6A,0x49, //2005 0x7A,0xAd,0xBd, //2006 0x02,0x5d,0x52, //2007 0x09,0x2d,0x47, //2008 0x5C,0x95,0xBA, //2009 0x0A,0x95,0x4e, //2010 0x0B,0x4A,0x43, //2011 0x4B,0x55,0x37, //2012 0x0A,0xd5,0x4A, //2013 0x95,0x5A,0xBf, //2014 0x04,0xBA,0x53, //2015 0x0A,0x5B,0x48, //2016 0x65,0x2B,0xBC, //2017 0x05,0x2B,0x50, //2018 0x0A,0x93,0x45, //2019 0x47,0x4A,0xB9, //2020 0x06,0xAA,0x4C, //2021 0x0A,0xd5,0x41, //2022 0x24,0xdA,0xB6, //2023 0x04,0xB6,0x4A, //2024 0x69,0x57,0x3d, //2025 0x0A,0x4e,0x51, //2026 0x0d,0x26,0x46, //2027 0x5e,0x93,0x3A, //2028 0x0d,0x53,0x4d, //2029 0x05,0xAA,0x43, //2030 0x36,0xB5,0x37, //2031 0x09,0x6d,0x4B, //2032 0xB4,0xAe,0xBf, //2033 0x04,0xAd,0x53, //2034 0x0A,0x4d,0x48, //2035 0x6d,0x25,0xBC, //2036 0x0d,0x25,0x4f, //2037 0x0d,0x52,0x44, //2038 0x5d,0xAA,0x38, //2039 0x0B,0x5A,0x4C, //2040 0x05,0x6d,0x41, //2041 0x24,0xAd,0xB6, //2042 0x04,0x9B,0x4A, //2043 0x7A,0x4B,0xBe, //2044 0x0A,0x4B,0x51, //2045 0x0A,0xA5,0x46, //2046 0x5B,0x52,0xBA, //2047 0x06,0xd2,0x4e, //2048 0x0A,0xdA,0x42, //2049 0x35,0x5B,0x37, //2050 0x09,0x37,0x4B, //2051 0x84,0x97,0xC1, //2052 0x04,0x97,0x53, //2053 0x06,0x4B,0x48, //2054 0x66,0xA5,0x3C, //2055 0x0e,0xA5,0x4f, //2056 0x06,0xB2,0x44, //2057
Previous article:51 MCU Proteus simulation 320x240TFT color screen
Next article:Microcontroller breathing light program and waveform demonstration
- Learn ARM development(16)
- Learn ARM development(17)
- Learn ARM development(18)
- Embedded system debugging simulation tool
- A small question that has been bothering me recently has finally been solved~~
- Learn ARM development (1)
- Learn ARM development (2)
- Learn ARM development (4)
- Learn ARM development (6)
Professor at Beihang University, dedicated to promoting microcontrollers and embedded systems for over 20 years.
- LED chemical incompatibility test to see which chemicals LEDs can be used with
- Application of ARM9 hardware coprocessor on WinCE embedded motherboard
- What are the key points for selecting rotor flowmeter?
- LM317 high power charger circuit
- A brief analysis of Embest's application and development of embedded medical devices
- Single-phase RC protection circuit
- stm32 PVD programmable voltage monitor
- Introduction and measurement of edge trigger and level trigger of 51 single chip microcomputer
- Improved design of Linux system software shell protection technology
- What to do if the ABB robot protection device stops
- CGD and Qorvo to jointly revolutionize motor control solutions
- CGD and Qorvo to jointly revolutionize motor control solutions
- Keysight Technologies FieldFox handheld analyzer with VDI spread spectrum module to achieve millimeter wave analysis function
- Infineon's PASCO2V15 XENSIV PAS CO2 5V Sensor Now Available at Mouser for Accurate CO2 Level Measurement
- Advanced gameplay, Harting takes your PCB board connection to a new level!
- Advanced gameplay, Harting takes your PCB board connection to a new level!
- A new chapter in Great Wall Motors R&D: solid-state battery technology leads the future
- Naxin Micro provides full-scenario GaN driver IC solutions
- Interpreting Huawei’s new solid-state battery patent, will it challenge CATL in 2030?
- Are pure electric/plug-in hybrid vehicles going crazy? A Chinese company has launched the world's first -40℃ dischargeable hybrid battery that is not afraid of cold
- Xunwei i.MX6ULL development board ported Gdb+Gdbserver debugging
- How is the storage period of components calculated?
- Let me show you how to calculate a current transformer!
- UHF Duplexer
- How to assign initial values to a continuous RAM range in C2000 chip
- Urgently hiring Linux driver engineer + six insurances and one fund + talent apartment + work residence permit
- Theory and Implementation of Narrow-Band IF Sampling Based on DSP_C54X
- [TI recommended course] #Boost and buck-boost DCDC converters help wireless charging design#
- The microcontroller has its own EEPROM. Is it necessary to add an external EEPROM? Small-volume and high-capacity EEPROMs are more expensive!
- I am facing a problem during the debian burning process of the Sipeed LicheeRV 86 development board?