• You can log in to your eeworld account to continue watching:
  • Dual-port network-impedance and admittance parameters and their analysis in balun
  • Login
  • Duration:28 minutes and 55 seconds
  • Date:2024/06/30
  • Uploader:桂花蒸
Introduction
keywords: circuit Millimeter wave
Course Introduction: This digital course covers three topics: microwave/millimeter wave active and passive circuits, microwave/millimeter wave signal source design, and radio frequency transceiver system parameters.

□ Course objectives: To train students to have a full understanding of radio frequency transceiver systems and circuits, and to provide students with design examples to understand the implementation of various key radio frequency circuits.

■ Course unit:
Unit 1. Frequency synthesizer
1-1 Introduction to frequency synthesizer
1-2 Frequency synthesizer architecture
1-3 Frequency control and switching speed
1-4 Frequency synthesizer model
1-5 Frequency response of frequency synthesizer
1- 6 Signal tracking and locking of frequency synthesizer
1-7 Frequency synthesizer’s frequency locking range and stabilization time
1-8 Phasor and phase noise analysis
1-9 Phase noise of frequency synthesizer
1-10 Stability of frequency synthesizer Degree
1-11 Fractional frequency synthesizer
1-12 Difference integral modulation fractional frequency synthesizer

Unit 2.
2-1 Power and gain expression method (Part1)
2-1 Power and gain expression method (Part2)
2-2 Phase noise (Part1)
2-2 Phase noise (Part2)
2-3 Common nonlinear parameters of RF transceiver systems (Part1)
2-3 Common nonlinear parameters of RF transceiver systems (Part2)
2-3 Common RF transceivers System nonlinear parameters (Part3)
2-3 Common nonlinear parameters of RF transceiver systems (Part4)
2-3 Common nonlinear parameters of RF transceiver systems (Part5)
2-3 Common nonlinear parameters of RF transceiver systems (Part6)
2 -4 Noise index and sensitivity (Part1)
2-4 Noise index and sensitivity (Part2)
2-4 Noise index and sensitivity (Part3)

Unit 3-1. Transceiver circuit and system
3-1 Part1 Transceiver-Signal Transmitting and Receiving
3-1 Part2 Transmitting End-Upconverter Mixer and Power Amplifier
3-1 Part3 Transmitting and Receiving End-Filter and Switch
3-1 Part4 Receiving End-Low Noise Amplifier and Down-frequency Mixer
Unit 3-2. Frequency Modulation Radar Design and Application
3-2 Part1 Frequency Modulation Continuous Wave Radar
3-2 Part2 Monopulse Radar
3-2 Part3 CMOS Radar Design and Application
Unit 3-3. Network Analysis and Its Application
3-3 Part1 Dual Port network-impedance and admittance parameters and their analysis on balun
3-3 Part2 Dual-port network-analysis of transmission matrix
3-3 Part3 Single-frequency power divider and dual-frequency rat path coupler
3-3 Part4 Miniaturization Coupler Design
3-3 Part5 Multi-port Measurement and Buried Method
Unit 3-4. CMOS Active Circuit
3-4 Part1 CMOS Low Noise Amplifier
3-4 Part2 Millimeter Wave CMOS Circuit Considerations
3-4 Part3 CMOS Power Amplifier
3 - 4 Part4 Double Push Voltage Controlled Oscillator
Unfold ↓

You Might Like

Recommended Posts

How to copper-plated AGND and DGND respectively?
How did the antenna appear? The two grounds are connected together through magnetic beads.
嵌入式开发 PCB Design
This week's highlights
[b][url=http://www.deyisupport.com/blog/b/analogwire/archive/2016/08/24/52480.aspx]Sensing: How to use inductive switches for lid open/close detection? [/url][/b] [align=left][color=black][font=微软雅黑,
橙色凯 Analogue and Mixed Signal
Confused on the road of hardware
I have been working in hardware for half a year after graduation, and have also worked independently on company projects. Although I feel very happy and excited when I make something by myself, I am n
零℃冰淇淋 Talking about work
Realization of the software of indoor unit of air conditioner based on PIC16C74 single chip microcomputer
MCU software implementation is the focus of MCU system application. It is an important link to realize program design based on hardware design. MCU program design generally includes the following step
lorant Microchip MCU
Aren't all charging stations AC-DC, used to charge electric vehicles? Why are there DC charging stations?
Aren't all charging piles AC-DC, and then charge electric vehicles? Why are there DC charging piles? -----------A DC charging pile is a charging pile where the battery pack charges the battery pack of
QWE4562009 Integrated technical exchanges
Comprehensive understanding of infrared remote control
Comprehensive understanding of infrared remote control
CO2CO2 DIY/Open Source Hardware

Recommended Content

Hot VideosMore

Circuit

可能感兴趣器件

EEWorld
subscription
account

EEWorld
service
account

Automotive
development
circle

About Us Customer Service Contact Information Datasheet Sitemap LatestNews


Room 1530, 15th Floor, Building B, No.18 Zhongguancun Street, Haidian District, Beijing, Postal Code: 100190 China Telephone: 008610 8235 0740

Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号