• You can log in to your eeworld account to continue watching:
  • Phasor and Phase Noise Analysis
  • Login
  • Duration:33 minutes and 49 seconds
  • Date:2024/06/30
  • Uploader:桂花蒸
Introduction
keywords: circuit Millimeter wave
Course Introduction: This digital course covers three topics: microwave/millimeter wave active and passive circuits, microwave/millimeter wave signal source design, and radio frequency transceiver system parameters.

□ Course objectives: To train students to have a full understanding of radio frequency transceiver systems and circuits, and to provide students with design examples to understand the implementation of various key radio frequency circuits.

■ Course unit:
Unit 1. Frequency synthesizer
1-1 Introduction to frequency synthesizer
1-2 Frequency synthesizer architecture
1-3 Frequency control and switching speed
1-4 Frequency synthesizer model
1-5 Frequency response of frequency synthesizer
1- 6 Signal tracking and locking of frequency synthesizer
1-7 Frequency synthesizer’s frequency locking range and stabilization time
1-8 Phasor and phase noise analysis
1-9 Phase noise of frequency synthesizer
1-10 Stability of frequency synthesizer Degree
1-11 Fractional frequency synthesizer
1-12 Difference integral modulation fractional frequency synthesizer

Unit 2.
2-1 Power and gain expression method (Part1)
2-1 Power and gain expression method (Part2)
2-2 Phase noise (Part1)
2-2 Phase noise (Part2)
2-3 Common nonlinear parameters of RF transceiver systems (Part1)
2-3 Common nonlinear parameters of RF transceiver systems (Part2)
2-3 Common RF transceivers System nonlinear parameters (Part3)
2-3 Common nonlinear parameters of RF transceiver systems (Part4)
2-3 Common nonlinear parameters of RF transceiver systems (Part5)
2-3 Common nonlinear parameters of RF transceiver systems (Part6)
2 -4 Noise index and sensitivity (Part1)
2-4 Noise index and sensitivity (Part2)
2-4 Noise index and sensitivity (Part3)

Unit 3-1. Transceiver circuit and system
3-1 Part1 Transceiver-Signal Transmitting and Receiving
3-1 Part2 Transmitting End-Upconverter Mixer and Power Amplifier
3-1 Part3 Transmitting and Receiving End-Filter and Switch
3-1 Part4 Receiving End-Low Noise Amplifier and Down-frequency Mixer
Unit 3-2. Frequency Modulation Radar Design and Application
3-2 Part1 Frequency Modulation Continuous Wave Radar
3-2 Part2 Monopulse Radar
3-2 Part3 CMOS Radar Design and Application
Unit 3-3. Network Analysis and Its Application
3-3 Part1 Dual Port network-impedance and admittance parameters and their analysis on balun
3-3 Part2 Dual-port network-analysis of transmission matrix
3-3 Part3 Single-frequency power divider and dual-frequency rat path coupler
3-3 Part4 Miniaturization Coupler Design
3-3 Part5 Multi-port Measurement and Buried Method
Unit 3-4. CMOS Active Circuit
3-4 Part1 CMOS Low Noise Amplifier
3-4 Part2 Millimeter Wave CMOS Circuit Considerations
3-4 Part3 CMOS Power Amplifier
3 - 4 Part4 Double Push Voltage Controlled Oscillator
Unfold ↓

You Might Like

Recommended Posts

【CN0227】High-Performance, 16-Bit, 250 MSPS Wideband Receiver with Anti-Aliasing Filter
CIRCUIT FUNCTION AND BENEFITS The circuit shown in Figure 1 is a wideband receiver front end based on the ADL5562 ultralow noise differential amplifier driver and the AD9467 16-bit, 250 MSPS analog-to
EEWORLD社区 ADI Reference Circuit
TMS320F28035 Study Record 3
[p=35, null, left][color=#555555]1. Steps to call TI's official delay function DELAY_US() in the DSP2803x_Examples.h header file. [/color][/p][p=35, null, left][color=#555555]Steps to use the DELAY_US
tangxing Microcontroller MCU
Compiled successfully, but failed to run on the system recently
I successfully compiled it with PB, but when I downloaded it to the development version, I couldn’t boot it normally and the prompt was as follows: VBridge is not initialized! Bail out.. +CS8900:Drive
bblfeng Embedded System
Quadcopter
[i=s]This post was last edited by paulhyde on 2014-9-15 03:32[/i] :call:
lcb一不小心 Electronics Design Contest
TI's official SensorTag iBeaons app
It is said that after reading my last two posts, TI thought "It's amazing, SensorTag can be used like this!" Then they launched a new SensorTag firmware that supports iBeacons...:pleased: Haha, this i
southwolf1813 Wireless Connectivity
TI Battery Fuel Monitoring Basics Training
[i=s] This post was last edited by dontium on 2015-1-23 11:47 [/i] [font=宋体][size=10.5pt]This manual introduces the basic knowledge of TI battery power monitoring, traditional battery power detection
德州仪器 Analogue and Mixed Signal

Recommended Content

可能感兴趣器件

EEWorld
subscription
account

EEWorld
service
account

Automotive
development
circle

About Us Customer Service Contact Information Datasheet Sitemap LatestNews


Room 1530, 15th Floor, Building B, No.18 Zhongguancun Street, Haidian District, Beijing, Postal Code: 100190 China Telephone: 008610 8235 0740

Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号