STM32 LCD screen display + each module function debugging

Publisher:小牛队Latest update time:2017-09-13 Source: eefocusKeywords:stm32 Reading articles on mobile phones Scan QR code
Read articles on your mobile phone anytime, anywhere

Start with the project for PWM output experiment and add various other functions.

LCD screen display:

1. Hardware 
Write the picture description here 
, where timer generates pulses. 
2. Hallib 
Write the picture description here 
FMC is an interface that controls SDRAM and LCD. 
3. #include

#include "lcd.h"#include "sdram.h"12

4. init() 
SDRAM_Init(); //Initialize SDRAM 
LCD_Init(); //LCD initialization

Write the picture description here 
These two initializations are the key parts. First, SDRAM_Init(); is the underlying driver file of SDRAM. LCD_Init(); will call ltdc_init(), and HAL_SDRAM_Init() will also be used.

USMART Debugging:

1. Include the USMART folder and its path (not hardware, no hallib) 
2. #include "usmart.h" 
3. usmart_dev.init(108); // Initialize USMART 
4. In usmart_config.c, include timer.h, and add TIM3_PWM_Init function where the function is added 
Write the picture description here 
5. Open the serial port debugging assistant and directly send TIM3_PWM_Init(999,107). At the same time, you can change the rotation angle of the servo at any time. 
Write the picture description here

RTC clock:

1.hardware 
rtc folder 
2.hallib 
stm32f7xx_hal_rtc.c 
stm32f7xx_hal_rtc_ex.c 
3.include 
rtc.h 
4.main

RTC_TimeTypeDef RTC_TimeStruct;
    RTC_DateTypeDef RTC_DateStruct;
    u8 tbuf[40];
    u8 t=0;
RTC_Init(); //Initialize RTC
t++; if((t%10)==0) //Update the displayed data every 100ms
        {
            HAL_RTC_GetTime(&RTC_Handler,&RTC_TimeStruct,RTC_FORMAT_BIN);            sprintf((char*)tbuf,"Time:%02d:%02d:%02d",RTC_TimeStruct.Hours,RTC_TimeStruct.Minutes,RTC_TimeStruct.Seconds); 
            LCD_ShowString(30,140,210,16,16,tbuf);  
            HAL_RTC_GetDate(&RTC_Handler,&RTC_DateStruct,RTC_FORMAT_BIN);            sprintf((char*)tbuf,"Date:20%02d-%02d-%02d",RTC_DateStruct.Year,RTC_DateStruct.Month,RTC_DateStruct.Date); 
            LCD_ShowString(30,160,210,16,16,tbuf);  
            sprintf((char*)tbuf,"Week:%d",RTC_DateStruct.WeekDay); 
            LCD_ShowString(30,180,210,16,16,tbuf);
        }1234567891011121314151617

5.usmart  6.interrupt processing callback function
Write the picture description here 
in rtc.c  :

#include "timer.h" //RTC alarm A interrupt processing callback function void HAL_RTC_AlarmAEventCallback(RTC_HandleTypeDef *hrtc)
{
    printf("ALARM A!\r\n");
    TIM3_PWM_Init(1000*-1,108-1);
}1234567

Wake up from standby:

1.hardware 
wkup 
2.hallib 
无 
3.include

#include "wkup.h"1

4.main 
WKUP_Init(); //Standby wakeup initialization 
LCD_Init(); //Initialize LCD 
LCD_Init must be after WKUP_Init. Each click of a button will enter the main function, and will enter WKUP_Init():

//WKUP_Heat:
    if(Check_WKUP()==0)
    { Sys_Enter_Standby(); //Not booting up, entering standby mode
    }//Key interrupt:
    if(Check_WKUP())//Shutdown
        { Sys_Enter_Standby(); //Enter standby mode
        }1234567891011

If the key is pressed for less than 3 seconds, it will directly enter standby mode by calling Check_WKUP()==0; if it is pressed for 3 seconds, it will skip Sys_Enter_Standby() and boot normally, and turn on the key interrupt. If the key is pressed for less than 3 seconds after booting, it will enter interrupt judgment and will not enter Sys_Enter_Standby(); if it is pressed for 3 seconds after booting, it will directly enter standby mode.

TPAD:

1.hardware 
tpad 
2.hallib 
无 
3.include

#include "tpad.h"1

4.main

TPAD_Init(8); //Initialize the touch button, counting at 108/8=13.5Mhz frequency
 switch (TPAD_Scan(0)) //Successfully captured a rising edge (this function execution time is at least 15ms)
        {            case 0:
                LCD_LED(1); //Turn on the backlight
                LED1(1);                break;            case 1:
                LCD_LED(0); //Turn off the backlight
                LED1(0);                break;
        }switch (TPAD_Scan(0)) loops inside while(1). 12345678910111213

5.tpad.c

u8 TPAD_Scan(u8 mode)
{ static u8 keyen=0; //0, can start detection;>0, can not start detection    
    static u8 res=0; u8 sample=3; //The default sampling frequency is 3 times  
    u16 rval;    if(mode)
    {
        sample=6; //When continuous pressing is supported, set the sampling frequency to 6 times
        keyen=0; //Support continuous pressing    
    }
    rval=TPAD_Get_MaxVal(sample); 
    if(rval>(tpad_default_val*4/3)&&rval<(10*tpad_default_val))//greater than tpad_default_val+TPAD_GATE_VAL, and less than 10 times tpad_default_val, then it is valid
    {                            
        if(keyen==0)res++; //greater than tpad_default_val+TPAD_GATE_VAL, yes   
        //printf("r:%d\r\n",rval);                                         
        keyen=3; //The key will be effective after at least 3 more times   
    } 
    if(keyen)keyen--;
    res=res%2;    return res;
}

First, the default is channel 1 of time2, and the gpio is pa5. However, pa5 will conflict with the subsequent ADC, so select channel 3 of time2, and the gpio is pa2.
Just change GPIO_PIN_2 and TIM_CHANNEL_3, and ignore GPIO_AF1_TIM2. 12345678910111213141516171819202122232425

ADC:

1.hardware 
ADC 
2.hallib 
adc.c以及adc_ex.c 
3.main

#include“adc.h”u16 adcx;float temp;
MY_ADC_Init(); //Initialize ADC1 channel adcx=Get_Adc_Average(ADC_CHANNEL_5,20); //Get the conversion value of channel 5, average 20 times
        LCD_ShowxNum(134,130,adcx,4,16,0); //Display the original value after ADCC sampling
        temp=(float)adcx*(3.3/4096); //Get the actual voltage value with decimal after calculation, such as 3.1111
        adcx=temp; //Assign the integer part to the adcx variable, because adcx is a u16 integer
        LCD_ShowxNum(134,150,adcx,1,16,0); //Display the integer part of the voltage value. For example, 3.1111 will be displayed as 3.
        temp-=adcx; //Remove the integer part that has been displayed and leave the decimal part, such as 3.1111-3=0.1111
        temp*=1000; //Multiply the decimal part by 1000. For example, 0.1111 is converted to 111.1, which is equivalent to retaining three decimal places.
        LCD_ShowxNum(150,150,temp,3,16,0X80); //Display the decimal part (converted to integer display before), here it shows 111.1234567891011

When the internal temperature sensor is short temp. 
4. Driver file

ADC1_Handler.Init.Resolution=ADC_RESOLUTION_12B;             //12位模式GPIO_InitTypeDef GPIO_Initure;
    __HAL_RCC_ADC1_CLK_ENABLE(); //Enable ADC1 clock
    __HAL_RCC_GPIOA_CLK_ENABLE(); //Enable GPIOA clock

    GPIO_Initure.Pin=GPIO_PIN_5;            //PA5
    GPIO_Initure.Mode=GPIO_MODE_ANALOG;     //模拟
    GPIO_Initure.Pull=GPIO_NOPULL; //Without pull-up and pull-down
    HAL_GPIO_Init(GPIOA,&GPIO_Initure);12345678910

Get_Adc_Average(ADC_CHANNEL_5,20) is to get the value of channel 5, so PA5 needs to be initialized. If it is an internal temperature sensor, it is connected to channel 18, and PA5 is ignored. In HAL_ADC_MspInit, only the ADC1 clock needs to be enabled. The Get_Temprate function will get the voltage value of channel 18, temperate=(float)adcx*(3.3/4096); the default reference voltage is 0-3.3V, and the resolution is 12 bits. What is obtained in the channel is digital, and the corresponding voltage can be obtained after conversion.

DAC:

1.hardware 
DAC 
2.hallib 
dac.c and dac_ex.c 
3.main

#include "dac.h"u16 dacval=0;u8 key;
DAC1_Init(); //Initialize DAC1LCD_ShowString(30,150,200,16,16,"DAC VAL:");          
    LCD_ShowString(30,170,200,16,16,"DAC VOL:0.000V");        
    LCD_ShowString(30,190,200,16,16,"ADC VOL:0.000V");
key=KEY_Scan(0);              
        if(key==KEY2_PRES)
        {        
            if(dacval<4000)dacval+=200;
            HAL_DAC_SetValue(&DAC1_Handler,DAC_CHANNEL_1,DAC_ALIGN_12B_R,dacval); //Set DAC value
        }else if(key==KEY1_PRES)    
        {            if(dacval>200)dacval-=200;            else dacval=0;
            HAL_DAC_SetValue(&DAC1_Handler,DAC_CHANNEL_1,DAC_ALIGN_12B_R,dacval); //Set DAC value
        }    
        if(t==10||key==KEY1_PRES||key==KEY2_PRES) //WKUP/KEY1 is pressed, or the timer is up
        {     
            adcx=HAL_DAC_GetValue(&DAC1_Handler,DAC_CHANNEL_1); //Read the previously set DAC value
            LCD_ShowxNum(94,150,adcx,4,16,0); //Display DAC register value
            temp=(float)adcx*(3.3/4096); //Get DAC voltage value
            adcx=temp;
            LCD_ShowxNum(94,170,temp,1,16,0); //Display the integer part of the voltage value
            temp-=adcx;
            temp*=1000;
            LCD_ShowxNum(110,170,temp,3,16,0X80); //Display the decimal part of the voltage value
            adcx=Get_Adc_Average(ADC_CHANNEL_5,10); //Get ADC conversion value    
            temp=(float)adcx*(3.3/4096); //Get ADC voltage value
            adcx=temp;
            LCD_ShowxNum(94,190,temp,1,16,0); //Display the integer part of the voltage value
            temp-=adcx;
            temp*=1000;
            LCD_ShowxNum(110,190,temp,3,16,0X80); //Display the decimal part of the voltage value       
            t=0;
        }       
        delay_ms(10);12345678910111213141516171819202122232425262728293031323334353637

4. Driver file 
PA4 is used as the output channel of DAC. First, use the key control to give it a number. This number is put into the DAC channel. The signal put into the DAC channel is a digital signal. Then read the value of the DAC channel, which is a number. Convert the number into the corresponding analog voltage (0-3300 corresponds to 0-3.3V). At this time, you can read the value of channel 1 and convert it into an analog voltage.

PA4 and PA5 are connected with jumper caps. PA5 is used as the input channel of ADC. The signal put into the ADC channel is an analog signal. Then the value of the channel read is an analog number, which is converted into the corresponding digital voltage (0-3300 corresponds to 0-3.3V). After further conversion, a digital voltage value is obtained.

pcf8574:

PCF8574 is an IO port expansion chip. 2 IO ports can expand up to 64 IO ports. 
1. Hardware 
IIC and PCF8574 
2. Halib 
no 
3. Main

#include "pcf8574.h"u8 beepsta=1; //pcf8574PCF8574_Init(); //Initialize PCF8574if(key==KEY0_PRES)//KEY0 is pressed, read the string and display it
        { 
            beepsta=!beepsta; //Invert the buzzer status
            PCF8574_WriteBit(BEEP_IO,beepsta); //control the buzzer
        } if(PCF8574_INT==0) //PCF8574 interrupt low level is valid
        {
            key=PCF8574_ReadBit(EX_IO); //Read the EXIO status and clear the interrupt output of PCF8574 (INT returns to high level)
            if(key==0)LED0_Toggle; //LED1 status inverted 
        }

PCF8574_INT is judged for time-sharing multiplexing. If EX_IO is repeatedly touched with a low level, the interrupt of PCF8574 will be triggered. 123456789101112131415

4. Driver files

IIC_Init(); 
At the same time, initialize PB12 (INT pin of PCF8574 is connected to PB12 of stm32f767) as pull-up input;
Set all io to high level. 123

touchscreen:

1.hardware 
24CXX and touch 
2.hallib 
no 
3.main

#include "touch.h"u8 t1=0;u16 lastpos[5][2]; //touch screen
tp_dev.init(); //Touch screen initialization 
tp_dev.scan(0); if(tp_dev.sta) { if(tp_dev.x[t1]

It means that there is no need for 5-point touch, and it will respond immediately when touched. If you want to draw a button to control the rotation of the servo, you can refer to the following figure: 
Write the picture description here 
4. Driver file

The 5-point touch judgment is also removed in u8 FT5206_Scan (u8 mode).

Infrared remote control:

1.hardware 
remote 
2.hallib 
无 
3.main

#include "remote.h" Remote_Init(); //Initialize infrared reception key=Remote_Scan();  
        if(key)
        {
        LCD_ShowNum(86,130,key,3,16); //Display key value
        LCD_ShowNum(86,150,RmtCnt,3,16); //Show the number of key presses          
            switch(key)
            {                case 0:str="ERROR";break;              
                case 162:str="POWER";break;     
                case 98:str="UP";break;     
                case 2:str="PLAY";break;         
                case 226:str="ALIENTEK";break;        
                case 194:str="RIGHT";break;    
                case 34:str="LEFT";break;         
                case 224:str="VOL-";break;        
                case 168:str="DOWN";break;         
                case 144:str="VOL+";break;          
                case 104:str="1";TIM3_PWM_Init(1000-1,108-1);break;       
                case 152:str="2";TIM3_PWM_Init(2000-1,108-1);break;    
                case 176:str="3";TIM3_PWM_Init(3000-1,108-1);break;     
                case 48:str="4";TIM3_PWM_Init(4000-1,108-1);break;          
                case 24:str="5";TIM3_PWM_Init(5000-1,108-1);break;          
                case 122:str="6";break;       
                case 16:str="7";break;                              
                case 56:str="8";break;   
                case 90:str="9";break;                case 66:str="0";break;                case 82:str="DELETE";break;      
            }
        }else delay_ms(10);  
        LCD_Fill(86,170,86+8*8,170+16,WHITE); //Clear previous display
        LCD_ShowString(86,170,200,16,16,str); //Show SYMBOL12345678910111213141516171819202122232425262728293031323334

Note that you must judge if(key) here, otherwise the interface will be refreshed crazily. 
4. Driver file 
infrared remote control is also input capture, using channel 1 of timer 1, so it does not conflict with pwm timer 3. 
Write the picture description here

FLASH:

1.hardware 
STMFLASH 
2.hallib 
flash/flash.ex 
3.main

#include "stmflash.h" // string array to be written to STM32 FLASH const u8 TEXT_Buffer[] = {"STM32 FLASH TEST"}; #define TEXT_LENTH sizeof(TEXT_Buffer) // array length #define SIZE TEXT_LENTH/4+((TEXT_LENTH%4)?1:0) #define FLASH_SAVE_ADDR 0X08020000 // set FLASH save address (must be a multiple of 4, and the sector must be larger than the sector occupied by this code.
                                        //Otherwise, the entire sector may be erased during the write operation, causing part of the program to be lost and causing a crash. u8 datatemp[SIZE]; 
LCD_ShowString(30,170,200,16,16,"Start Write FLASH....");
            STMFLASH_Write(FLASH_SAVE_ADDR,(u32*)TEXT_Buffer,SIZE);
            LCD_ShowString(30,170,200,16,16,"FLASH Write Finished!");//Prompt that the transfer is completed STMFLASH_Read(FLASH_SAVE_ADDR,(u32*)datatemp,SIZE);
            LCD_ShowString(30,170,200,16,16,"The Data Readed Is: ");//Prompt that the transmission is completed
            LCD_ShowString(30,190,200,16,16,datatemp);//Display the read string 1234567891011121314151617

FLASH:

1.hardware 
STMFLASH 
2.hallib 
flash/flash.ex 
3.main


Keywords:stm32 Reference address:STM32 LCD screen display + each module function debugging

Previous article:stm32 controls mpu9250 nine-axis sensor
Next article:stm32 controls the rotation of the servo DS3115

Latest Microcontroller Articles
  • Download from the Internet--ARM Getting Started Notes
    A brief introduction: From today on, the ARM notebook of the rookie is open, and it can be regarded as a place to store these notes. Why publish it? Maybe you are interested in it. In fact, the reason for these notes is ...
  • Learn ARM development(22)
    Turning off and on interrupts Interrupts are an efficient dialogue mechanism, but sometimes you don't want to interrupt the program while it is running. For example, when you are printing something, the program suddenly interrupts and another ...
  • Learn ARM development(21)
    First, declare the task pointer, because it will be used later. Task pointer volatile TASK_TCB* volatile g_pCurrentTask = NULL;volatile TASK_TCB* vol ...
  • Learn ARM development(20)
    With the previous Tick interrupt, the basic task switching conditions are ready. However, this "easterly" is also difficult to understand. Only through continuous practice can we understand it. ...
  • Learn ARM development(19)
    After many days of hard work, I finally got the interrupt working. But in order to allow RTOS to use timer interrupts, what kind of interrupts can be implemented in S3C44B0? There are two methods in S3C44B0. ...
  • Learn ARM development(14)
  • Learn ARM development(15)
  • Learn ARM development(16)
  • Learn ARM development(17)
Change More Related Popular Components

EEWorld
subscription
account

EEWorld
service
account

Automotive
development
circle

About Us Customer Service Contact Information Datasheet Sitemap LatestNews


Room 1530, 15th Floor, Building B, No.18 Zhongguancun Street, Haidian District, Beijing, Postal Code: 100190 China Telephone: 008610 8235 0740

Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved 京ICP证060456号 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号