The CV mode of the electronic load is the basis of LED power supply testing. CV means constant voltage, but the load is only a current-pulling device and cannot provide constant voltage by itself. Therefore, the so-called CV is only to servo the change of the output current of the LED power supply through the voltage negative feedback circuit to balance the charge on the LED output capacitor and achieve the purpose of constant voltage. Therefore, there are two core factors that determine the accuracy of CV:
Load Bandwidth
The size of the LED power supply output capacitor
When the ripple frequency of the LED power supply output current is very high, if the load bandwidth is insufficient, the servo current change cannot be maintained, causing oscillation. When oscillation occurs, the load input voltage changes sharply, and the LED output capacitor is frequently charged and discharged with large currents. At this time, the detected current ripple will be much larger than the actual current ripple when the LED power supply is working in a steady state.
When the load bandwidth is insufficient, if the output capacitance of the LED power supply is large enough, the oscillation amplitude can be controlled within an acceptable range. Unfortunately, the price competition of LED power supplies is very fierce, and the output capacitance is generally insufficient. Therefore, the load bandwidth requirements for testing LED power supplies are very stringent.
Manufacturers will not directly indicate the bandwidth index of the load. You can only refer to another index: full-scale current rise time. Obviously, the smaller the full-scale current rise time, the higher the bandwidth of the load. The higher the load bandwidth, the lower the requirement for the output capacitance of the LED power supply. Generally speaking, a load with a full-scale current rise time of 10uS can meet the testing needs of most LED power supplies, but theoretically, any load in CV mode may oscillate. In this case, when the LED output capacitance remains unchanged, the higher the load bandwidth, the smaller the oscillation amplitude, and the higher the confidence of the test result. Therefore, when users use electronic loads for testing, they must pay close attention to the changes in the load input voltage ripple Vpp. Once it exceeds the range, the entire test result is no longer credible. This is very important and users must keep it in mind.
In CV mode, the voltage is constant, while the current ripple is usually very large. In order to improve the test efficiency, the load often refreshes the data at a high frequency, so the data jumps a lot. Many users use this to determine whether the load is suitable for LED testing. In fact, this is a very serious misunderstanding. The stability of the data is actually very easy to achieve. It only requires increasing the time measurement of the data filter. Very short low-end electronic loads have to filter on a large time scale because of their low measurement accuracy, but it turns out to be a blessing in disguise, making the data seem more stable. In fact, this is an illusion. To achieve accurate measurement, the fundamental method can only be to increase the sampling rate. If the sampling rate is not increased, the confidence of such measurement results is very low, which may cause serious quality accidents.
Based on the above analysis, LED power supply testing has strict requirements on the load, mainly including the following points:
The full-scale current rise time is the basis for ensuring accurate load carrying. The lower this value is, the better.
Data sampling rate is the basis for accurate measurement. The higher the value, the better.
Real-time display of Vpp is the basis for judging whether the measurement data is credible;
The filter speed adjustment function is a small means to obtain stable current data;
Finally, please note that there are some loads on the market that claim to be electronic loads specifically for LED power supply testing. In fact, they are general electronic loads in a different appearance. Moreover, they are usually modified electronic loads whose bandwidth and sampling rate do not meet the test requirements. They do not improve their own bandwidth, because bandwidth technology is the core technology of the load and is closely related to cost, so it is difficult to improve. They are often improved through three ways to make the current data more stable, but also more unreliable.
The simplest way is to increase the filtering intensity and force the data to be stable. Simply using this method can easily lead to misjudgment and cause quality accidents.
Adjust the voltage feedback loop and filter the voltage feedback signal strongly to reduce the current oscillation amplitude. This method goes the other way and further reduces the load bandwidth, turning the non-oscillation and large oscillation situations into smaller oscillations.
Increasing the capacitance inside the load can suppress the occurrence or amplitude of oscillation, but the measured current ripple will be seriously smaller than the actual ripple, but it is very helpful for testing the DC operating point. However, because the rated working voltage of the load is generally high, the price and size of the high-voltage capacitor are very serious problems, so it is difficult to increase it to the ideal state, and it is often used in combination with the second method. Another problem is that in this case, it often uses relatively cheap high-voltage electrolytic capacitors, which will bring many parasitic problems.
This article comprehensively introduces the principle of electronic load, especially focuses on the misunderstandings of electronic load in the process of LED measurement. In addition, this article also proposes some feasible solutions to obtain more stable current data. I hope you can gain something after reading this article.
Previous article:How to solve EMC/EMI problems in LED power supply design
Next article:Design of high-power LED driver circuit based on TNY279
- Popular Resources
- Popular amplifiers
- MathWorks and NXP Collaborate to Launch Model-Based Design Toolbox for Battery Management Systems
- STMicroelectronics' advanced galvanically isolated gate driver STGAP3S provides flexible protection for IGBTs and SiC MOSFETs
- New diaphragm-free solid-state lithium battery technology is launched: the distance between the positive and negative electrodes is less than 0.000001 meters
- [“Source” Observe the Autumn Series] Application and testing of the next generation of semiconductor gallium oxide device photodetectors
- 采用自主设计封装,绝缘电阻显著提高!ROHM开发出更高电压xEV系统的SiC肖特基势垒二极管
- Will GaN replace SiC? PI's disruptive 1700V InnoMux2 is here to demonstrate
- From Isolation to the Third and a Half Generation: Understanding Naxinwei's Gate Driver IC in One Article
- The appeal of 48 V technology: importance, benefits and key factors in system-level applications
- Important breakthrough in recycling of used lithium-ion batteries
- LED chemical incompatibility test to see which chemicals LEDs can be used with
- Application of ARM9 hardware coprocessor on WinCE embedded motherboard
- What are the key points for selecting rotor flowmeter?
- LM317 high power charger circuit
- A brief analysis of Embest's application and development of embedded medical devices
- Single-phase RC protection circuit
- stm32 PVD programmable voltage monitor
- Introduction and measurement of edge trigger and level trigger of 51 single chip microcomputer
- Improved design of Linux system software shell protection technology
- What to do if the ABB robot protection device stops
- Analysis of the application of several common contact parts in high-voltage connectors of new energy vehicles
- Wiring harness durability test and contact voltage drop test method
- From probes to power supplies, Tektronix is leading the way in comprehensive innovation in power electronics testing
- From probes to power supplies, Tektronix is leading the way in comprehensive innovation in power electronics testing
- Sn-doped CuO nanostructure-based ethanol gas sensor for real-time drunk driving detection in vehicles
- Design considerations for automotive battery wiring harness
- Do you know all the various motors commonly used in automotive electronics?
- What are the functions of the Internet of Vehicles? What are the uses and benefits of the Internet of Vehicles?
- Power Inverter - A critical safety system for electric vehicles
- Analysis of the information security mechanism of AUTOSAR, the automotive embedded software framework
- How to choose pliers, terminals, wires, and heat shrink tubing for DuPont cables?
- Talk about the "obstacles" on the road to power supply upgrade
- How to do switch detection in TWS headset design
- FAQ|Littelfuse Live: How to improve the safety and reliability of smart building electronic equipment in the era of the Internet of Things
- How to measure the output ripple of a single-phase inverter with an oscilloscope
- No color difference splicing screen
- Analysis of optimization methods for overcrowded solder joints in PCB design
- FPGA design clean code is a core skill for programmers
- Toshiba DC motors and stepper motors make your motors smarter!
- Xilinx Vivado Quick Start - HDL Flow - Contains videos, projects and Chinese version documents