pdf

Principles of GNSS, inertial and multi-sensor integrated navigation system

  • 2022-03-20
  • 197.18MB
  • Points it Requires : 1

\"GNSS and Inertial and Multi-Sensor Integrated Navigation System Principles (Second Edition)\" introduces the principles of inertial sensors; inertial navigation; satellite navigation systems (including GPS, GLONASS, GALILEO, etc.); satellite navigation processing; advanced satellite navigation technology; land radio navigation; dead reckoning, attitude and altitude measurement; feature matching; integrated navigation system principles and analysis. The main contents include: inertial/satellite combination (combination structure, modeling); inertial navigation alignment and zero-speed correction; multi-sensor integrated navigation; fault detection and integrity monitoring. Chapter 1 Introduction 1 1.1 Basic Concepts 1 1.2 Dead Reckoning 5 1.3 Direct Positioning 6 1.3.1 Direct Positioning Methods 6 1.3.2 Signal-Based Positioning 10 1.3.3 Environmental Feature Matching 12 1.4 Navigation System 14 1.4.1 Requirements 14 1.4.2 Scenarios 15 1.4.3 Combination 16 1.4.4 Assistance 16 1.4.5 Assistance and Collaboration 17 1.4.6 Fault Detection 17 1.5 Book Overview 18 References 20 Chapter 2 Coordinate Systems, Kinematics, and the Earth 21 2.1 Coordinate Systems 21 2.1.1 Earth-Centered Inertial Coordinate Systems 23 2.1.2 Earth-Centered Earth-Fixed Coordinate Systems 24 2.1.3 Local Navigation Coordinate Systems 25 2.1.4 Local Tangent Plane Coordinate Systems 26 2.1.5 Vehicle Coordinate Systems 26 2.1.6 Other Coordinate Systems 27 2.2 Attitude, Rotation, and Projected Axis Transformations 28 2.2.1 Euler Angle Attitude Representation 30 2.2.2 Coordinate Transformation Matrix 32 2.2.3 Quaternion Attitude Representation 36 2.2.4 Rotation Vector 38 2.3 Kinematics 39 2.3.1 Angular Velocity 40 2.3.2 Cartesian Position 42 2.3.3 Velocity 43 2.3.4 Acceleration 44 2.3.5 Motion Relative to a Rotating Reference Frame 45 2.4 Earth Surface Shape and Gravity Model 47 2.4.1 Ellipsoid Model of the Earth Surface 48 2.4.2 Position Representation in Curvilinear Coordinate Systems 50 2.4.3 Position Transformation 54 2.4.4 Geoid, Vertical Height, and Earth Tides 56 2.4.5 Projected Coordinate Systems 57 2.4.6 Earth Rotation 59 2.4.7 Specific force, gravity and gravitation 59 2.5 Coordinate system transformation 64 2.5.1 Transformation between inertial system and earth system 64 2.5.2 Transformation between earth system and local navigation coordinate system 65 2.5.3 Transformation between inertial system and local navigation coordinate system 66 2.5.4 Earth and local tangent plane coordinate system 66 2.5.5 Transformation of navigation results 67 References 68 Bibliography 69 Chapter 3 Kalman filter 70 3.1 Introduction 70 3.1.1 Elements of Kalman filter 71 3.1.2 Kalman filter process 73 3.1.3 Application of Kalman filter 74 3.2 Algorithms and models 75 3.2.1 Definition 75 3.2.2 Kalman filter algorithm 79 3.2.3 System model 83 3.2.4 Observation model 86 3.2.5 3.2.6 Closed-loop Kalman Filter 91 3.2.7 Sequential Observation Update 92 3.3 Problems in Kalman Filter Implementation 93 3.3.1 Parameter Adjustment and Algorithm Stability 93 3.3.2 Algorithm Design 95 3.3.3 Numerical Computation Issues 97 3.3.4 Time Synchronization 98 3.3.5 Kalman Filter Design Process 101 3.4 Extensions of Kalman Filter 101 3.4.1 Extended and Linearized Kalman Filter 101 3.4.2 UKF 104 3.4.3 Time-Correlated Noise 106 3.4.4 Adaptive Kalman Filter 107 3.4.5 Multi-hypothesis Filter 108 3.4.6 Kalman Smoothing 111 3.5 Particle Filter 113 References 116 Chapter 4 Inertial Sensors 118 4.1 4.1.1 Pendulum Accelerometer 121 4.1.2 Vibratory Beam Accelerometer 123 4.2 Gyroscope 124 4.2.1 Optical Gyroscope 124 4.2.2 Vibratory Gyroscope 128 4.3 Inertial Measurement Unit 129 4.4 Error Characteristics 132 4.4.1 Bias 133 4.4.2 Scale Factor and Cross-Coupled Error 135 4.4.3 Random Noise 137 4.4.4 Deep Error Sources 138 4.4.5 Vibration-Induced Errors 140 4.4.6 Error Models 141 References 142 Chapter 5 Inertial Navigation 144 5.1 Introduction to Inertial Navigation 145 5.2 Inertial Navigation Equations 148 5.2.1 Attitude Update 149 5.2.2 Force-Specific Coordinate Transformation 150 5.2.3 Velocity Update 151 5.2.4 Position Update 151 5.3 Earth System Navigation Equations 152 5.3.1 Attitude Update 153 5.3.2 Specific Force Coordinate Transformation 153 5.3.3 Velocity Update 154 5.3.4 Position Update 154 5.4 Local Navigation System Navigation Equations 155 5.4.1 Attitude Update 155 5.4.2 Specific Force Coordinate Transformation 157 5.4.3 Velocity Update 157 5.4.4 Position Update 158 5.4.5 Swimming Heading Navigation Implementation 159 5.5 Navigation Equation Optimization 161 5.5.1 Accurate Attitude Update 162 5.5.2 Accurate Specific Force Coordinate Transformation 165 5.5.3 Accurate Velocity and Position Update 166 5.5.4 Effects of Sensor Sampling Period and Vibration 167 5.6 Initialization and Alignment 173 5.6.1 Position and Velocity Initialization 174 5.6.2 Attitude Initialization 174 5.6.3 Fine Alignment 179 5.7 Inertial Navigation System Error Propagation 180 5.7.1 Short-Term Linear Motion Error Propagation 182 5.7.2 Medium- and Long-Term Navigation Error Propagation 186 5.7.3 Maneuver-Related Errors 190 5.8 Rotationally Modulated IMUs 192 5.9 Nonholonomic IMUs 193 References 193 Chapter 6 Dead Reckoning, Attitude, and Altitude Measurement 195 6.1 Attitude Measurement 195 6.1.1 Magnetic Orientation 195 6.1.2 Navigational Gyrocompass 199 6.1.3 Strapdown Yaw-Axis Gyro 200 6.1.4 Heading Determination from Trajectory 201 6.1.5 6.1.6 Accelerometer Leveling and Tilt Sensors 203 6.1.7 Horizon Sensitive Methods 204 6.1.8 Attitude Heading Reference System 205 6.2 Altitude and Depth Measurement 206 6.2.1 Barometric Altimeter 206 6.2.2 Depth Pressure Sensor 207 6.2.3 Radar Altimeter 208 6.3 Odometer 209 6.3.1 Linear Odometer 210 6.3.2 Differential Odometer 213 6.3.3 Odometer and Non-holonomic IMU Combination 214 6.4 Pedestrian Dead Reckoning 215 6.5 Doppler Radar and Sonar 219 6.6 Other Dead Reckoning Techniques 223 6.6.1 Correlation-Based Velocity Measurement 223 6.6.2 Atmospheric Data 223 6.6.3 Vessel Speedometer 223 References 224 Chapter 7 Principles of Radio Positioning 228 7.1 Structure and Methods of Radio Positioning 228 7.1.1 Self-positioning and telemetry positioning 228 7.1.2 Relative positioning 230 7.1.3 Proximity positioning 231 7.1.4 Distance measurement positioning 232 7.1.5 Angle measurement positioning 241 7.1.6 Pattern matching 243 7.1.7 Doppler positioning 246 7.2 Positioning signal 247 7.2.1 Modulation type 248 7.2.2 Radio spectrum 249 7.3 User equipment 250 7.3.1 Structure 250 7.3.2 Synchronous measurement of signals 251 7.3.3 Positioning calculation based on ranging information 253 7.4 Propagation, error sources and positioning accuracy 257 7.4.1 Effects of troposphere, ionosphere and ground propagation 257 7.4.2 Attenuation, reflection, multipath and scattering 259 7.4.3 Resolution, Noise and Tracking Error 260 7.4.4 Transmitter Position and Time Error 262 7.4.5 Effect of Signal Geometry 262 References 267 Chapter 8 GNSS Basic Principles, Signals and Constellations 269 8.1 Basics of Satellite Navigation 269 8.1.1 GNSS Architecture 270 8.1.2 Signals and Ranging 272 8.1.3 Positioning 276 8.1.4 Error Sources and Performance Limitations 278 8.2 Systems 280 8.2.1 Global Positioning System (GPS) 281 8.2.2 GLONASS 282 8.2.3 Galileo 282 8.2.4 Beidou Navigation System (Beidou) 283 8.2.5 Regional Navigation System 283 8.2.6 Augmentation System 283 8.2.7 System Compatibility 285 GNSS signals 286 8.3.1 Signal types 287 8.3.2 Global Positioning System GPS 289 8.3.3 GLONASS 292 8.3.4 Galileo 293 8.3.5 BeiDou 296 8.3.6 Regional navigation systems 296 8.3.7 Augmentation systems 297 8.4 Navigation messages 297 8.4.1 GPS 298 8.4.2 GLONASS 299 8.4.3 Galileo 299 8.4.4 SBAS 300 8.4.5 Time base synchronization 300 8.5 Satellite orbits and geometry 300 8.5.1 Satellite orbits 301 8.5.2 Satellite position and velocity 303 8.5.3 Range, range rate and line of sight vector 309 8.5.4 9.1 Receiver Hardware and Antenna 318 9.1.1 Antenna 318 9.1.2 Reference Crystal 319 9.1.3 Receiver Front End 320 9.1.4 Baseband Signal Processing 323 9.2 Ranging Processor 334 9.2.1 Acquisition 334 9.2.2 Code Tracking 339 9.2.3 Carrier Tracking 344 9.2.4 Tracking Lock Detection 350 9.2.5 Navigation Message Demodulation 351 9.2.6 Carrier Power-to-Noise Density Ratio Measurements 352 9.2.7 Pseudorange, Pseudorange Rate, and Carrier Phase Measurements 352 9.3 Ranging Error Sources 354 9.3.1 Ephemeris Prediction and Satellite Clock Errors 355 9.3.2 9.3.3 Tracking Errors 360 9.3.4 Multipath, Non-Line-of-Sight, and Diffraction 365 9.4 Navigation Processor 370 9.4.1 Single-Point Navigation Position Solution 372 9.4.2 Filtered Navigation Position Solution 376 9.4.3 Signal Geometry and Navigation Position Solution Accuracy 387 9.4.4 Positioning Error Budget 392 References 394 Chapter 10 Advanced Satellite Navigation Technology 398 10.1 Differential GNSS 398 10.1.1 Spatial and Temporal Correlation of GNSS Errors 399 10.1.2 Local and Regional DGNSS 399 10.1.3 Wide-Area DGNSS and Precise Point Positioning 401 10.1.4 Relative GNSS 401 10.2 Kinematic Real-Time Carrier Phase Positioning and Attitude Determination 402 10.2.1 Principle of Positioning by Accumulated Range Increment Observation 403 10.2.2 Single Epoch Navigation Resolution Using Double Difference ADR 406 10.2.3 Integer Ambiguity Resolution Based on Geometry 407 10.2.4 Multi-Frequency Integer Ambiguity Resolution 408 10.2.5 GNSS Attitude Determination 409 10.3 Interference Suppression and Weak Signal Processing 411 10.3.1 Interference Sources, Interference and Attenuation 411 10.3.2 Antenna System 412 10.3.3 Receiver Front-end Filtering 413 10.3.4 Extended Range Tracking 413 10.3.5 Receiver Sensitivity 414 10.3.6 Joint Acquisition and Tracking 415 10.3.7 Vector Tracking 415 10.4 Multipath Interference Suppression and Non-Line-of-Sight Reception 417 10.4.1 Antenna Technology 418 10.4.2 Receiver Technology 418 10.4.3 Navigation Processor Technology 419 10.5 Aids, Assistance, and Orbit Prediction 420 10.5.1 Acquisition Aid and Velocity Aid 421 10.5.2 Assisted GNSS 422 10.5.3 Orbit Prediction 422 10.6 Shadow Matching 423 References 424 Chapter 11 Medium and Long Range Radio Navigation 431 11.1 Aeronautical Navigation Systems 431 11.1.1 Range Measuring Devices 431 11.1.2 Range-Bearing Systems 436 11.1.3 Omnidirectional Beacons 438 11.1.4 JTIDS/MIDS Relative Navigation 438 11.1.5 Future Aeronautical Navigation Systems 438 11.2 Enhanced Loran 439 11.2.1 Signals 439 11.2.2 11.2.3 Error Sources 443 11.2.4 Differential Loran 444 11.3 Mobile Phone Positioning 445 11.3.1 Proximity and Pattern Matching 446 11.3.2 Ranging 446 11.4 Other Systems 447 11.4.1 Iridium Positioning 447 11.4.2 Maritime Radio Beacons 448 11.4.3 AM Radio Broadcast 448 11.4.4 FM Radio Broadcast 449 11.4.5 Digital Television and Broadcasting 449 11.4.6 Universal Radio Positioning 450 References 450 Chapter 12 Short Range Positioning 454 12.1 Pseudolites 454 12.1.1 In-band Pseudolites 454 12.1.2 Locata and Terralite XPS 455 12.1.3 Indoor Messaging Systems 455 12.2 Ultra-Wideband 455 12.2.1 Modulation Schemes 457 12.2.2 Signal Timing 458 12.2.3 Positioning 459 12.3 Short-Range Communication Systems 460 12.3.1 Wireless Local Area Network (Wi-Fi) 460 12.3.2 Wireless Private Area Network 461 12.3.3 Radio Frequency Identification 462 12.3.4 Bluetooth Low Energy 462 12.3.5 Dedicated Short-Range Communication 463 12.4 Underwater Acoustic Positioning 463 12.5 Other Positioning Technologies 465 12.5.1 Radio 465 12.5.2 Ultrasonic 466 12.5.3 Infrared 466 12.5.4 Optical 466 12.5.5 Magnetic 466 References 467 Chapter 13 Environmental Feature Matching 470 13.1 Map Matching 472 13.1.1 Digital Highway Maps 473 13.1.2 Road Segment Identification 473 13.1.3 Road Localization 478 13.1.4 Railway Map Matching 479 13.1.5 Pedestrian Map Matching 479 13.2 Terrain Referenced Navigation 481 13.2.1 Sequential Processing 482 13.2.2 Batch Processing 483 13.2.3 Performance 485 13.2.4 Laser TRN 486 13.2.5 Sonar TRN 487 13.2.6 Barometric TRN 487 13.2.7 Terrain Database Altitude Aid 487 13.3 Image-Based Navigation 488 13.3.1 Image Sensors 489 13.3.2 Image feature comparison 491 13.3.3 Position correction using a single feature 493 13.3.4 Position correction using overall image matching 495 13.3.5 Visual odometry 496 13.3.6 Feature tracking 497 13.3.7 Stellar navigation 498 Streamers 13.4 Other feature matching techniques 499 13.4.1 Gravity gradient measurement 500 13.4.2 Geomagnetic field anomalies 501 13.4.3 Space X-ray Sources 501 References 502 Chapter 14 INS/GNSS Integrated Navigation 507 14.1 Integrated Structure 509 14.1.1 Inertial Navigation Parameter Correction 509 14.1.2 Loosely Coupled Integrated Navigation 513 14.1.3 Tight Coupling 514 14.1.4 GNSS Aids 515 14.1.5 Deep Integration 518 14.2 System Model and State Selection 520 14.2.1 State Selection and Observability 520 14.2.2 INS Error State Propagation in Inertial Frame 523 14.2.3 INS Error State Propagation in Earth Frame 527 14.2.4 INS Error State Propagation in Local Navigation Frame 529 14.2.5 Additional IMU Error State 533 14.2.6 INS System Noise 534 14.2.7 GNSS State Propagation and System Noise 537 [1] 14.2.8 State Initialization 538 14.3 Measurement Model 540 14.3.1 Loosely Coupled Integrated Navigation 542 14.3.2 Tightly Coupled Integrated Navigation 545 14.3.3 Deeply Coupled Integrated Navigation 549 14.3.4 Estimation of Attitude and Instrument Errors 556 14.4 Further Discussion on INS/GNSS Integration 557 14.4.1 Differential GNSS 557 14.4.2 Carrier Phase Positioning 557 14.4.3 GNSS Attitude 559 14.4.4 Large Heading Angle Error 561 14.4.5 Advanced IMU Error Modeling 562 14.4.6 Smoothing 563 References 563 Chapter 15 INS Alignment, Zero-Speed ​​Correction, and Motion Constraints 568 15.1 15.1.1 Traditional Measurement Matching 570 15.1.2 Fast Transfer Alignment 572 15.1.3 Reference Navigation System 573 15.2 Quasi-Static Alignment 574 15.2.1 Coarse Alignment 574 15.2.2 Fine Alignment 576 15.3 Zero Velocity Correction 577 15.3.1 Standstill Detection 578 15.3.2 Zero Velocity Correction 579 15.3.3 Zero Angular Rate Correction 579 15.4 Motion Constraints 580 15.4.1 Land Vehicle Constraints 580 15.4.2 Walking Constraints 582 15.4.3 Ship Constraints 583 References 583 Chapter 16 Multi-Sensor Integrated Navigation 586 16.1 Combined Structure 586 16.1.1 Cascaded Single-Point Combination 587 16.1.2 Single-Point Centralized Combination 589 16.1.3 Cascaded Filter Combination 590 16.1.4 Centralized Filter Combination 591 16.1.5 Federated Filter Architecture 593 16.1.6 Hybrid Combination Architecture 596 16.1.7 Full-State Kalman Filter with Prediction 596 16.1.8 Error-State Kalman Filter 599 16.1.9 Primary and Backup Modes 600 16.1.10 Scenario Adaptive Mode 601 16.2 Dead Reckoning, Attitude, and Altitude Measurement 603 16.2.1 Attitude 604 16.2.2 Altitude and Depth 609 16.2.3 Odometer 609 16.2.4 Walking Dead Reckoning Based on Step Detection 613 16.2.5 Doppler Radar and Sonar 616 16.2.6 16.3 Positioning Measurements 617 16.3.1 Combinations of Position Measurements 618 16.3.2 Combinations of Range Measurements 620 16.3.3 Combinations of Angle Measurements 625 16.3.4 Combinations of Alignment Measurements 628 16.3.5 Processing of Multivalue Measurements 629 16.3.6 Feature Tracking and Map Creation 630 16.3.7 Aids to Positioning Systems 632 References 632 Chapter 17 Fault Detection, Integrity Monitoring, and Testing 634 17.1 Fault Modes 635 17.1.1 Inertial Navigation 635 17.1.2 Dead Reckoning, Attitude, and Altitude Measurements 635 17.1.3 GNSS 635 17.1.4 Land-Based Radio Navigation 636 17.1.5 Environmental Feature Matching and Tracking 636 17.1.6 Combination Algorithms 637 17.1.7 Scenarios 637 17.2 Range Checks 637 17.2.1 Sensor Outputs 638 17.2.2 Navigation Parameters 638 17.2.3 Kalman Filter Estimation 638 17.3 Kalman Filter Measurement Innovations 639 17.3.1 Innovation Filtering 639 17.3.2 Innovation Sequence Monitoring 641 17.3.3 Remedies for Biased State Estimates 642 17.4 Direct Consistency Checks 643 17.4.1 Measurement Consistency Checks and RAIM 645 17.4.2 Multiple Parallel Parameters 647 17.5 Infrastructure-Based Integrity Monitoring 650 17.6 Parameter Protection and Performance Requirements 651 17.7 Testing 654 17.7.1 Field Trials 654 17.7.2 17.7.3 Laboratory Testing 656 17.7.4 Software Simulation 656 References 656 Chapter 18 Applications and Trends 659 18.1 Design and Development 659 18.2 Aviation 661 18.3 Guided Weapons and Small UAVs 662 18.4 Ground Vehicle Applications 663 18.5 Orbital Navigation 664 18.6 Ocean Navigation 665 18.7 Underwater Navigation 666 18.8 Spacecraft Navigation 667 18.9 Pedestrian Navigation 668 18.10 Other Applications 669 18.11 Future Trends 670 References 671 MATLAB Simulation Software Guide 673 M.1 Introduction 673 M.2 Example Script Files 674 M.3 Navigation Simulation Main Function 677 M.4 General Navigation Functions 678 M.5 Tool Functions 680 M.6 Motion trajectory 681 M.7 Navigation error file format 682 Appendix 684 List of important symbols 684 Acronyms and abbreviations 693 CD-ROM 700 Introduction to the GNSS Technology and Application Series 704\\\"6 Smoothing 563 References 563 Chapter 15 INS Alignment, Zero Velocity Correction, and Motion Constraints 568 15.1 Transfer Alignment 568 15.1.1 Traditional Measurement Matching 570 15.1.2 Fast Transfer Alignment 572 15.1.3 Reference Navigation System 573 15.2 Quasi-Static Alignment 574 15.2.1 Coarse Alignment 574 15.2.2 Fine Alignment 576 15.3 Zero Velocity Correction 577 15.3.1 Standstill Detection 578 Yu Yuyu 15.3.2 Zero Velocity Correction 579 15.3.3 Zero Angular Rate Correction 579 15.4 Motion Constraints 580 15.4.1 Land Vehicle Constraints 580 15.4.2 Walking Constraints 582 15.4.3 Ship Constraints 583 References 583 Chapter 16 Chapter Multi-sensor Integrated Navigation 586 16.1 Combination Structure 586 16.1.1 Cascaded Single-point Combination 587 16.1.2 Single-point Centralized Combination 589 16.1.3 Cascaded Filter Combination 590 16.1.4 Centralized Filter Combination 591 16.1.5 Federated Filter Structure 593 16.1.6 Hybrid Combination Structure 596 16.1.7 Full-state Kalman Filter with Prediction 596 16.1.8 Error State Kalman Filter 599 16.1.9 Primary Mode and Backup Mode 600 16.1.10 Scenario Adaptive Mode 601 16.2 Dead Reckoning, Attitude and Altitude Measurement 603 16.2.1 Attitude 604 16.2.2 Altitude and Depth 609 16.2.3 Odometer 609 16.2.4 16.2.5 Doppler Radar and Sonar 616 16.2.6 Visual Odometry and Terrain-Referenced Dead Reckoning 617 16.3 Positioning Measurements 617 16.3.1 Combination of Position Measurements 618 16.3.2 Range Measurement Combination 620 16.3.3 Angle Measurement Combination 625 16.3.4 Alignment Combination 628 16.3.5 Processing of Multi-Value Measurements 629 16.3.6 Feature Tracking and Mapping 630 16.3.7 Aids to Positioning Systems 632 References 632 Chapter 17 Fault Detection, Integrity Monitoring, and Testing 634 17.1 Fault Modes 635 17.1.1 Inertial Navigation 635 17.1.2 Dead Reckoning, Attitude, and Altitude Measurement 635 17.1.3 GNSS 635 17.1.4 Land-Based Radio Navigation 636 17.1.5 Environmental Signature Matching and Tracking 636 17.1.6 Combination Algorithms 637 17.1.7 Scenarios 637 17.2 Range Checks 637 17.2.1 Sensor Outputs 638 17.2.2 Navigation Parameters 638 17.2.3 Kalman Filter Estimation 638 17.3 Kalman Filter Measurement Innovations 639 17.3.1 Innovation Filtering 639 17.3.2 Innovation Sequence Monitoring 641 17.3.3 Remedies for Biased State Estimates 642 17.4 Direct Consistency Checks 643 17.4.1 Measurement Consistency Checks and RAIM 645 17.4.2 Multiple Parallel Parameters 647 17.5 Infrastructure-Based Integrity Monitoring 650 17.6 Parameter Protection and Performance Requirements 651 17.7 Testing 654 17.7.1 Field Testing 654 17.7.2 Recorded Data Testing 655 17.7.3 Laboratory Testing 656 17.7.4 Software Simulation 656 References 656 Chapter 18 Applications and Trends 659 18.1 Design and Development 659 18.2 Aviation 661 18.3 Guided Weapons and Small UAVs 662 18.4 Ground Vehicle Applications 663 18.5 Orbital Navigation 664 18.6 Ocean Navigation 665 18.7 Underwater Navigation 666 18.8 Spacecraft Navigation 667 18.9 Pedestrian Navigation 668 18.10 Other Applications 669 18.11 Future Trends 670 References 671 MATLAB Simulation Software Guide 673 M.1 Introduction 673 M.2 Demonstration Script File 674 M.3 Navigation Simulation Main Function 677 M.4 General Navigation Function 678 M.5 Tool Function 680 M.6 Motion Trajectory 681 M.7 Navigation Error File Format 682 Appendix 684 List of Important Symbols 684 Acronyms and Abbreviations 693 CD-ROM 700 Introduction to GNSS Technology and Application Series 704\\\"6 Smoothing 563 References 563 Chapter 15 INS Alignment, Zero Velocity Correction, and Motion Constraints 568 15.1 Transfer Alignment 568 15.1.1 Traditional Measurement Matching 570 15.1.2 Fast Transfer Alignment 572 15.1.3 Reference Navigation System 573 15.2 Quasi-Static Alignment 574 15.2.1 Coarse Alignment 574 15.2.2 Fine Alignment 576 15.3 Zero Velocity Correction 577 15.3.1 Standstill Detection 578 Yu Yuyu 15.3.2 Zero Velocity Correction 579 15.3.3 Zero Angular Rate Correction 579 15.4 Motion Constraints 580 15.4.1 Land Vehicle Constraints 580 15.4.2 Walking Constraints 582 15.4.3 Ship Constraints 583 References 583 Chapter 16 Chapter Multi-sensor Integrated Navigation 586 16.1 Combination Structure 586 16.1.1 Cascaded Single-point Combination 587 16.1.2 Single-point Centralized Combination 589 16.1.3 Cascaded Filter Combination 590 16.1.4 Centralized Filter Combination 591 16.1.5 Federated Filter Structure 593 16.1.6 Hybrid Combination Structure 596 16.1.7 Full-state Kalman Filter with Prediction 596 16.1.8 Error State Kalman Filter 599 16.1.9 Primary Mode and Backup Mode 600 16.1.10 Scenario Adaptive Mode 601 16.2 Dead Reckoning, Attitude and Altitude Measurement 603 16.2.1 Attitude 604 16.2.2 Altitude and Depth 609 16.2.3 Odometer 609 16.2.4 16.2.5 Doppler Radar and Sonar 616 16.2.6 Visual Odometry and Terrain-Referenced Dead Reckoning 617 16.3 Positioning Measurements 617 16.3.1 Combination of Position Measurements 618 16.3.2 Range Measurement Combination 620 16.3.3 Angle Measurement Combination 625 16.3.4 Alignment Combination 628 16.3.5 Processing of Multi-Value Measurements 629 16.3.6 Feature Tracking and Mapping 630 16.3.7 Aids to Positioning Systems 632 References 632 Chapter 17 Fault Detection, Integrity Monitoring, and Testing 634 17.1 Fault Modes 635 17.1.1 Inertial Navigation 635 17.1.2 Dead Reckoning, Attitude, and Altitude Measurement 635 17.1.3 GNSS 635 17.1.4 Land-Based Radio Navigation 636 17.1.5 Environmental Signature Matching and Tracking 636 17.1.6 Combination Algorithms 637 17.1.7 Scenarios 637 17.2 Range Checks 637 17.2.1 Sensor Outputs 638 17.2.2 Navigation Parameters 638 17.2.3 Kalman Filter Estimation 638 17.3 Kalman Filter Measurement Innovations 639 17.3.1 Innovation Filtering 639 17.3.2 Innovation Sequence Monitoring 641 17.3.3 Remedies for Biased State Estimates 642 17.4 Direct Consistency Checks 643 17.4.1 Measurement Consistency Checks and RAIM 645 17.4.2 Multiple Parallel Parameters 647 17.5 Infrastructure-Based Integrity Monitoring 650 17.6 Parameter Protection and Performance Requirements 651 17.7 Testing 654 17.7.1 Field Testing 654 17.7.2 Recorded Data Testing 655 17.7.3 Laboratory Testing 656 17.7.4 Software Simulation 656 References 656 Chapter 18 Applications and Trends 659 18.1 Design and Development 659 18.2 Aviation 661 18.3 Guided Weapons and Small UAVs 662 18.4 Ground Vehicle Applications 663 18.5 Orbital Navigation 664 18.6 Ocean Navigation 665 18.7 Underwater Navigation 666 18.8 Spacecraft Navigation 667 18.9 Pedestrian Navigation 668 18.10 Other Applications 669 18.11 Future Trends 670 References 671 MATLAB Simulation Software Guide 673 M.1 Introduction 673 M.2 Demonstration Script File 674 M.3 Navigation Simulation Main Function 677 M.4 General Navigation Function 678 M.5 Tool Function 680 M.6 Motion Trajectory 681 M.7 Navigation Error File Format 682 Appendix 684 List of Important Symbols 684 Acronyms and Abbreviations 693 CD-ROM 700 Introduction to GNSS Technology and Application Series 704\\\"7.3 Laboratory Testing 656 17.7.4 Software Simulation 656 References 656 Chapter 18 Applications and Development Trends 659 18.1 Design and Development 659 18.2 Aviation 661 18.3 Guided Weapons and Small UAVs 662 18.4 Ground Vehicle Applications 663 18.5 Orbital Navigation 664 18.6 Ocean Navigation 665 18.7 Underwater Navigation 666 18.8 Spacecraft Navigation 667 18.9 Pedestrian Navigation 668 18.10 Other Applications 669 18.11 Future Trends 670 References 671 MATLAB Simulation Software Guide 673 M.1 Introduction 673 M.2 Demonstration Script Files 674 M.3 Navigation Simulation Main Function 677 M.4 General Navigation Function 678 M.5 Tool Function 680 M.6 Motion Trajectory 681 M.7 Navigation Error File Format 682 Appendix 684 List of Important Symbols 684 Acronyms and Abbreviations 693 CD-ROM 700 Introduction to GNSS Technology and Applications Series 704\\\"7.3 Laboratory Testing 656 17.7.4 Software Simulation 656 References 656 Chapter 18 Applications and Development Trends 659 18.1 Design and Development 659 18.2 Aviation 661 18.3 Guided Weapons and Small UAVs 662 18.4 Ground Vehicle Applications 663 18.5 Orbital Navigation 664 18.6 Ocean Navigation 665 18.7 Underwater Navigation 666 18.8 Spacecraft Navigation 667 18.9 Pedestrian Navigation 668 18.10 Other Applications 669 18.11 Future Trends 670 References 671 MATLAB Simulation Software Guide 673 M.1 Introduction 673 M.2 Demonstration Script Files 674 M.3 Navigation Simulation Main Function 677 M.4 General Navigation Function 678 M.5 Tool Function 680 M.6 Motion Trajectory 681 M.7 Navigation Error File Format 682 Appendix 684 List of Important Symbols 684 Acronyms and Abbreviations 693 CD-ROM 700 Introduction to GNSS Technology and Applications Series 704\\\"

unfold

You Might Like

Uploader
sigma
 

Recommended ContentMore

Popular Components

Just Take a LookMore

EEWorld
subscription
account

EEWorld
service
account

Automotive
development
circle

About Us Customer Service Contact Information Datasheet Sitemap LatestNews


Room 1530, 15th Floor, Building B, No.18 Zhongguancun Street, Haidian District, Beijing, Postal Code: 100190 China Telephone: 008610 8235 0740

Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved 京ICP证060456号 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号
×