pdf

Application of clustering algorithm in bank customer segmentation

  • 2013-09-20
  • 212.05KB
  • Points it Requires : 1

In view of the fact that clustering algorithms are widely used in the financial field, this paper compares and analyzes the three clustering algorithms, DBSCAN, K-means and X-means, in terms of execution efficiency, scalability, and outlier detection capabilities based on a bank customer data set, and proposes to apply the X-means algorithm to customer segmentation in the banking industry. A bank customer segmentation model is established using the X-means algorithm to provide scientific decision support for bank decision makers. Keywords: clustering; K-means algorithm; X-means algorithm; customer segmentation

unfold

You Might Like

Uploader
mamselc
 

Recommended ContentMore

Popular Components

Just Take a LookMore

EEWorld
subscription
account

EEWorld
service
account

Automotive
development
circle

About Us Customer Service Contact Information Datasheet Sitemap LatestNews


Room 1530, 15th Floor, Building B, No.18 Zhongguancun Street, Haidian District, Beijing, Postal Code: 100190 China Telephone: 008610 8235 0740

Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved 京ICP证060456号 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号
×