• You can log in to your eeworld account to continue watching:
  • Aging and fatigue of ferroelectric ceramics
  • Login
  • Duration:14 minutes and 2 seconds
  • Date:2021/10/30
  • Uploader:木犯001号
Introduction

This course is a basic course for the electronic science and technology major. It introduces in detail materials with dielectric, magnetoelectric, optoelectronic, semiconductor and sensitive functional properties used in the electronic information industry. This course combines academic frontiers with basic teaching, theoretical teaching with scientific research practice, and has rich teaching resources and novel teaching content. It can be used as an expanded teaching material for the cultivation of electronic materials and components talents.
Course Nature and Positioning The "Electronic Materials" course is an electronic information and electrical information major in colleges and universities majoring in electronic science and technology (solid-state electronic engineering, microelectronics, integrated circuit design and integrated systems, physical electronics, optoelectronic science and technology, information The basic main courses for undergraduate majors in science and engineering majors such as display and optoelectronic technology) are the core courses and important components of the "National Experimental Teaching Demonstration Center" of the University of Electronic Science and Technology of China. The course is mainly for undergraduate students majoring in electronic science and technology, and is also a reference for engineering and technical personnel engaged in related scientific research and production in the field of electronic materials.

Lecture 1 Basics of Electronic Ceramic Structure

01-01 Course Introduction
01-02 Bonding force between atoms
01-03 Close packing principle and coordination number of spheres
01-04 Pauling's rule
01-05 Typical structure of electronic ceramics
01-06 Microstructure of electronic ceramics
01- 07 Crystal structure defects of electronic ceramics
01-08 Solid solution structure of electronic ceramics
Lecture 2 Low dielectric device ceramics
02-01 Basic knowledge of low dielectric device porcelain
02-02 Typical low dielectric device porcelain
02-03 Low temperature co-fired ceramics
No. 3 Lecture on high dielectric capacitor porcelain
03-01 Basic knowledge of capacitor porcelain
03-02 Dielectric properties of high dielectric capacitor porcelain
03-03 Classification and preparation technology of high dielectric capacitor porcelain
03-04 Medium and high voltage ceramic capacitor porcelain
Lecture 4 Strong dielectric iron Electric Ceramics
04-01 Basic Knowledge of Ferroelectric Materials
04-02 Ferroelectricity of Ceramics and Ferroelectric Ceramics
04-03 Modification Mechanism of Ferroelectric Ceramics
04-04 Determination Principles of Ferroelectric Ceramic Materials
04-05 Ferroelectric Ceramics Aging and fatigue
Lecture 5 Monolithic capacitor porcelain
05-01 Structure and characteristics of monolithic capacitor porcelain
05-02 Main series of monolithic capacitor porcelain
Lecture 6 Semiconductor ceramics
06-01 Basic concepts of semiconductor ceramics
06-02 BaTiO3 ceramics Semiconducting Mechanism
06-03 PTC Thermistor
06-04 Semiconducting Ceramic Capacitor
Lecture 7 Piezoelectric Ceramics
07-01 Piezoelectric Effect
07-02 Main Parameters of Piezoelectric Ceramics
07-03 Lead-based Piezoelectric Ceramics
07-04 Transparent Electro-optical ceramics
Lecture 8 Overview of magnetic materials
08-01 Historical review of magnetism and magnetic materials
08-02 Market, opportunities and challenges of magnetic materials
Lecture 9 Basic knowledge of magnetism
09-01 Magnetostatic phenomena
09-02 Magnetization of materials
09- 03 Classification of magnetism and magnetic materials Lecture
10 Soft magnetic materials
10-01 Soft ferrite materials
10-02 LTCC gyromagnetic ferrite materials
10-03 Nanocrystalline soft magnetic materials
Lecture 11 Permanent magnetic materials
11-01 Permanent magnetic materials Introduction and basic theory
11-02 Metallic permanent magnetic materials
11-03 Rare earth permanent magnetic materials-NdFeB
11-04 Ferrite permanent magnetic materials
Lecture 12 Amorphous magnetic materials
Lecture 13 Several types of magnetic functional materials
13-01 Magnetostriction Material
13-02 Magnetocaloric effect and magnetic refrigeration technology
Unfold ↓

You Might Like

Recommended Posts

The weekly evaluation information will be here soon~ Have a happy holiday and happy work~~
After a long vacation, our evaluation information is open again~~~ Come and see what evaluation activities are in the application period and what evaluation reports are freshly released~~Evaluation ac
okhxyyo Special Edition for Assessment Centres
TLP3547 Evaluation Board Comprehensive Evaluation Report
[i=s]This post was last edited by wo4fisher on 2018-9-27 22:35[/i] 1. Off topic: I had no plan to apply for this evaluation activity, but I received multiple email reminders, and I may use similar dev
wo4fisher Toshiba Photorelays TLP3547 Review
NAND flash programming problem
I used the nand flash burning tool to read the program from the nand flash, and then burned it into the nand flash through the burning tool. After soldering it to the board, it booted normally. I segm
hncspjh Embedded System
Crazy Shell AI open source drone PID basics
1. Introduction to PID PID control is the most commonly used control method in automatic control systems. It was created mainly to solve the problems of fast, stable and accurate automatic control sys
fengke Creative Market
Knowledge about electrostatic protection
[align=left]I. Discharge type[/align][align=left]1) Contact discharge (static guns are generally pointed)[/align][align=left]2) Air discharge (static guns are generally round)[/align][align=left]II. E
莫拉 Discrete Device
What are the main differences between DSP's C language and host's C language?
1) The C language of DSP is standard ANSI C, which does not include the extended parts that communicate with peripherals, such as screen drawing, etc. However, in CCS, in order to facilitate debugging
火辣西米秀 DSP and ARM Processors

Recommended Content

Hot VideosMore

可能感兴趣器件

EEWorld
subscription
account

EEWorld
service
account

Automotive
development
circle

About Us Customer Service Contact Information Datasheet Sitemap LatestNews


Room 1530, 15th Floor, Building B, No.18 Zhongguancun Street, Haidian District, Beijing, Postal Code: 100190 China Telephone: 008610 8235 0740

Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号