pdf

Application of particle filter in radar target tracking

  • 2013-09-19
  • 155.41KB
  • Points it Requires : 2

The classic algorithm in the field of nonlinear estimation is the extended Kalman filter (EKF), which uses Taylor\'s linear transformation to approximate the nonlinear model, and thus has the disadvantages of large amount of calculation, poor real-time performance, and low estimation accuracy. The particle filter uses some random samples (particles) with weights to represent the required posterior probability density, rather than the traditional linear transformation, to obtain an approximate optimal numerical solution based on the physical model, which has the characteristics of high accuracy and fast convergence speed. This paper simulates the classic azimuth and slant range measurement tracking problem. The simulation results show that the tracking performance of the particle filter is better than that of the EKF.

unfold

You Might Like

Uploader
nishisb
 

Recommended ContentMore

Popular Components

Just Take a LookMore

EEWorld
subscription
account

EEWorld
service
account

Automotive
development
circle

About Us Customer Service Contact Information Datasheet Sitemap LatestNews


Room 1530, 15th Floor, Building B, No.18 Zhongguancun Street, Haidian District, Beijing, Postal Code: 100190 China Telephone: 008610 8235 0740

Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved 京ICP证060456号 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号
×