pdf

Optimized test generation algorithm based on chaos and genetic algorithm

  • 2013-09-18
  • 124.62KB
  • Points it Requires : 2

Based on the Hopfield neural network model of combinatorial circuit test generation, this paper discusses and analyzes the effective algorithm for test generation using the global search capability of chaotic neural networks and the adaptive test generation based on genetic algorithms. The algorithm based on chaotic neural networks uses the ergodicity and internal randomness of chaos to perform global search; while the genetic algorithm is different from the traditional method, it does not require fault propagation, fallback and other processes, and has the ability of parallel computing. Computer simulation results show the feasibility and efficiency of these two test generation algorithms. Keywords: neural network, chaotic search, genetic algorithm, test generation

unfold

You Might Like

Uploader
nishisb
 

Recommended ContentMore

Popular Components

Just Take a LookMore

EEWorld
subscription
account

EEWorld
service
account

Automotive
development
circle

About Us Customer Service Contact Information Datasheet Sitemap LatestNews


Room 1530, 15th Floor, Building B, No.18 Zhongguancun Street, Haidian District, Beijing, Postal Code: 100190 China Telephone: 008610 8235 0740

Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved 京ICP证060456号 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号
×