pdf

Dual Radar: A Dual 4D Radar Multimodal Dataset for Autonomous Driving

  • 2024-09-04
  • 20.88MB
  • Points it Requires : 1

双雷达:一种用于自动驾驶的双4D雷达多模态数据集

Abstract—Radar has stronger adaptability in adverse scenarios

for autonomous driving environmental perception compared to

widely adopted cameras and LiDARs. Compared with commonly

used 3D radars, latest 4D radars have precise vertical resolution

and higher point cloud density, making it a highly promising

sensor for autonomous driving in complex environmental perception. However, due to the much higher noise than LiDAR,

manufacturers choose different filtering strategies, resulting in

a direct ratio between point cloud density and noise level.

There is still a lack of comparative analysis on which method

is beneficial for deep learning-based perception algorithms in

autonomous driving. One of the main reasons is that current

datasets only adopt one type of 4D radar, making it difficult to

compare different 4D radars in the same scene. Therefore, in

this paper, we introduce a novel large-scale multi-modal dataset

featuring, for the first time, two types of 4D radars captured

simultaneously. This dataset enables further research into effective 4D radar perception algorithms. Our dataset consists

of 151 consecutive series, most of which last 20 seconds and

contain 10,007 meticulously synchronized and annotated frames.

Moreover, our dataset captures a variety of challenging driving

scenarios, including many road conditions, weather conditions,

nighttime and daytime with different lighting intensities and

periods. Our dataset annotates consecutive frames, which can be

applied to 3D object detection and tracking, and also supports

the study of multi-modal tasks. We experimentally validate our

dataset, providing valuable results for studying different types of

4D radars. This dataset is released on https://github.com/adeptthu/Dual-Radar

unfold

You Might Like

Uploader
MartinFowler
 

Recommended ContentMore

Popular Components

Just Take a LookMore

EEWorld
subscription
account

EEWorld
service
account

Automotive
development
circle

About Us Customer Service Contact Information Datasheet Sitemap LatestNews


Room 1530, 15th Floor, Building B, No.18 Zhongguancun Street, Haidian District, Beijing, Postal Code: 100190 China Telephone: 008610 8235 0740

Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved 京ICP证060456号 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号
×