Off-line systems with PFC front ends, industrial and process control, distributed power,
medical, ATE, communications, defense and aerospace.
For details on proper operation please refer to the:
Design Guide & Applications Manual for Maxi, Mini, Micro Family.
Absolute Maximum Ratings
Product Overview
These DC-DC converter modules use advanced
power processing, control and packaging
technologies to provide the performance,
flexibility, reliability and cost effectiveness of a
mature power component.
High frequency ZCS/ZVS switching provides
high power density with low noise and
high efficiency.
Part Numbering
e.g. V375A12T600BL2
375A
Product Grade Temperatures (°C)
Grade
Operating
Storage
E
= - 10 to +100 - 20 to +125
C
= - 20 to +100 - 40 to +125
T
= - 40 to +100 - 40 to +125
H
= - 40 to +100 - 55 to +125
M
= - 55 to +100 - 65 to +125
B
Output Power
P
OUT
160W
200W, 264W
300W, 400W
300W, 400W
400W, 600W
400W, 600W
400W, 600W
400W, 600W
600W
400W, 500W, 600W
400W, 600W
600W
Pin Style
Finish
Blank:
Short
Tin/Lead
L:
Long
Tin/Lead
S:
Short ModuMate
Gold
N:
Long ModuMate
Gold
F:
Short RoHS
Gold
G:
Long RoHS
Gold
K:
Extra Long RoHS
Gold
Baseplate
Blank:
Slotted
2:
Threaded
3:
Through-hole
Product Type
V
= Standard
S
= Enhanced
efficiency
(avail.
≤12
V
OUT
only)
Output Voltage
2
= 2V
3V3
= 3.3V
5
= 5V
8
= 8V
12
= 12V
15
= 15V
24
= 24V
28
= 28V
32
= 32V
36
= 36V
48
= 48V
54
= 54V
V
OUT
2V
3.3V
5V
8V
12V
15V
24V
28V
32V
36V
48V
54V
375V Maxi Family
Page 1 of 15
Rev 10.0
10/2017
375V Input
Module Family Electrical Characteristics
Electrical characteristics apply over the full operating range of input voltage, output load (resistive) and baseplate temperature, unless otherwise specified.
All temperatures refer to the operating temperature at the center of the baseplate.
MODULE INPUT SPECIFICATIONS
Parameter
Operating input voltage
Input surge withstand
Undervoltage turn-on
Undervoltage turn-off
Overvoltage turn-off/on
Disabled input current
204.7
429.2
242.5
212.2
446.3
467.5
1.1
Min
250
Typ
375
Max
425
500
247.5
Unit
V
DC
V
DC
V
DC
V
DC
V
DC
mA
PC pin low
<100ms
Notes
MODULE OUTPUT SPECIFICATIONS
Parameter
Output voltage setpoint
Line regulation
Temperature regulation
Power sharing accuracy
Programming range
10
±0.02
±0.002
±2
Min
Typ
Max
1
±0.2
±0.005
±5
110
Unit
%
%
% / °C
%
%
Notes
Of nominal output voltage. Nominal input; full load; 25°C
Low line to high line; full load
Over operating temperature range
10 to 100% of full load
Of nominal output voltage. For trimming below 90%
of nominal, a minimum load of 10% of maximum
rated power may be required.
Externally applied
Externally applied
Externally applied
Externally applied
Externally applied
Externally applied
Externally applied
Externally applied
Externally applied
Externally applied
Externally applied
Externally applied
+OUT to –OUT, +Sense to –OUT — Absolute Maximum Ratings
2V
3.3V
5V
8V
12V
15V
24V
28V
32V
36V
48V
54V
-0.5 to 3.1
-0.5 to 4.7
-0.5 to 7.0
-0.5 to 10.9
-0.5 to 16.1
-0.5 to 20.0
-0.5 to 31.7
-0.5 to 36.9
-0.5 to 41.9
-0.5 to 47.1
-0.5 to 62.9
-0.5 to 70.2
V
DC
V
DC
V
DC
V
DC
V
DC
V
DC
V
DC
V
DC
V
DC
V
DC
V
DC
V
DC
Note:
The permissible load current must never be exceeded during normal, abnormal or test conditions. For additional output related application
information, please refer to output connections on page 10.
THERMAL RESISTANCE AND CAPACITY
Parameter
Baseplate to sink; flat, greased surface
Baseplate to sink; thermal pad (P/N 20263)
Baseplate to ambient
Baseplate to ambient; 1000LFM
Thermal capacity
Min
Typ
0.08
0.07
4.9
1.1
165
Max
Unit
°C/Watt
°C/Watt
°C/Watt
°C/Watt
Watt-sec/°C
375V Maxi Family
Page 2 of 15
Rev 10.0
10/2017
375V Input
Module Family Electrical Characteristics (Cont.)
MODULE CONTROL SPECIFICATIONS
Parameter
Min
Typ
Max
Unit
Notes
Primary Side (PC = Primary Control; PR = Parallel)
PC bias voltage
current limit
PC module disable
PC module enable delay
PC module alarm
PC resistance
PR emitter amplitude
PR emitter current
PR receiver impedance
PR receiver threshold
PR drive capability
Secondary Side (SC = Secondary Control)
SC bandgap voltage
SC resistance
SC capacitance
SC module alarm
1.21
990
1.23
1000
0.033
0
1.25
1010
V
DC
Ω
µF
V
DC
With open trim; referenced to –Sense. See Fig. 7
Referenced to –Sense
0.9
5.7
150
375
2.4
500
2.5
625
2.6
12
1.0
5.9
5.50
1.5
2.3
5.75
2.1
2.6
4
6.00
3.0
2.9
7
0.5
1.1
6.1
V
DC
mA
V
DC
ms
Vavg
MΩ
Volts
mA
Ω
Volts
modules
25°C
Minimum pulse width: 20ns
Without PR buffer amplifier
UV, OV, OT, module fault. See Figs. 3 and 5
See Fig. 3, converter off or fault mode
PR load >30Ω, <30pF
PC current = 1.0mA
PC voltage = 5.5V
During normal operation
Switch must be able to sink
≥4mA.
See Fig. 2
MODULE GENERAL SPECIFICATIONS
Parameter
Remote sense (total drop)
Isolation test voltage (IN to OUT)*
Isolation test voltage (IN to base)*
Isolation test voltage (OUT to base)*
Isolation resistance
Weight (E, C, T grade)
Weight (H, M grade)
6.5
(184.3)
7.4
(209.3)
100
3000
1500
500
10
7.3
(207.5)
8.2
(232.5)
115
cURus, cTÜVus, CE
8.1
(230.7)
9.0
(255.7)
Min
Typ
Max
0.5
Unit
V
DC
V
RMS
V
RMS
V
RMS
MΩ
ounces
(grams)
ounces
(grams)
°C
See Figs. 3 and 5. Do not operate coverter >100°C.
UL60950-1, EN60950-1, CSA60950-1, IEC60950-1.
With appropriate fuse in series with the +Input
Notes
0.25V per leg (sense leads must be connected to
respective, output terminals)
Complies with reinforced insulation requirements
Complies with basic insulation requirements
Complies with operational insulation requirements
IN to OUT, IN to baseplate, OUT to baseplate
Temperature limiting
Agency approvals
* Isolation test voltage, 1 minute or less.
Note:
Specifications are subject to change without notice.
375V Maxi Family
Page 3 of 15
Rev 10.0
10/2017
375V Input
MODULE SPECIFIC OPERATING SPECIFICATIONS
2V
OUT
, 160W (e.g. S375A2C160BL, V375A2C160BL)
Parameter
Efficiency
S375A2C160BL (enhanced efficiency)
V375A2C160BL (standard efficiency)
Ripple and noise
Output OVP setpoint
Dissipation, standby
Load regulation
Load current
Current limit
Short circuit current
Min
76.0
72.0
2.7
Typ
80.0
73.7
200
2.8
8.4
±0.02
92
92
Max
Unit
%
250
2.9
11
±0.2
80
108
108
mV
Volts
Watts
%
Amps
Amps
Amps
Notes
Nominal input; full load; 25°C
p-p; Nominal input; full load; 20MHz bandwidth
25°C; recycle input voltage or PC to restart (>100ms off)
No load
No load to full load; nominal input
Output voltage 95% of nominal
Output voltage <250mV
0
81.6
56
3.3V
OUT
, 264W (e.g. S375A3V3C264BL, V375A3V3C264BL)
Parameter
Efficiency
S375A3V3C264BL (enhanced efficiency)
V375A3V3C264BL (standard efficiency)
Ripple and noise
Output OVP setpoint
Dissipation, standby
Load regulation
Load current
Current limit
Short circuit current
Min
83.0
80.0
4.14
Typ
86.0
81.0
120
4.3
4.9
±0.02
92
92
Max
Unit
%
150
4.46
7.8
±0.2
80
104
104
mV
Volts
Watts
%
Amps
Amps
Amps
Notes
Nominal input; full load; 25°C
p-p; Nominal input; full load; 20MHz bandwidth
25°C; recycle input voltage or PC to restart (>100ms off)
No load
No load to full load; nominal input
Output voltage 95% of nominal
Output voltage <250mV
0
81.6
56
3.3V
OUT
, 200W (e.g. S375A3V3C200BL, V375A3V3C200BL)
Parameter
Efficiency
S375A3V3C200BL (enhanced efficiency)
V375A3V3C200BL (standard efficiency)
Ripple and noise
Output OVP setpoint
Dissipation, standby
Load regulation
Load current
Current limit
Short circuit current
Min
82.0
78.0
4.14
Typ
86.0
78.9
60
4.3
7.9
±0.02
69.7
69.7
Max
Unit
%
75
4.46
9.1
±0.2
60.6
81.9
81.9
mV
Volts
Watts
%
Amps
Amps
Amps
Notes
Nominal input; full load; 25°C
p-p; Nominal input; full load; 20MHz bandwidth
25°C; recycle input voltage or PC to restart (>100ms off)
No load
No load to full load; nominal input
Output voltage 95% of nominal
Output voltage <250mV
0
61.8
42.4
5V
OUT
, 400W (e.g. S375A5C400BL, V375A5C400BL)
Parameter
Efficiency
S375A5C400BL (enhanced efficiency)
V375A5C400BL (standard efficiency)
Ripple and noise
Output OVP setpoint
Dissipation, standby
Load regulation
Load current
Current limit
Short circuit current
Min
84.0
80.0
6.26
Typ
86.0
83.0
120
6.49
6.6
±0.02
92
97
Max
Unit
%
150
6.72
9
±0.2
80
108
108
mV
Volts
Watts
%
Amps
Amps
Amps
Notes
Nominal input; full load; 25°C
p-p; Nominal input; full load; 20MHz bandwidth
25°C; recycle input voltage or PC to restart (>100ms off)
No load
No load to full load; nominal input
Output voltage 95% of nominal
Output voltage <250mV
0
81.6
56
375V Maxi Family
Page 4 of 15
Rev 10.0
10/2017
375V Input
MODULE SPECIFIC OPERATING SPECIFICATIONS (CONT.)
5V
OUT
, 300W (e.g. S375A5C300BL, V375A5C300BL)
Parameter
Efficiency
S375A5C300BL (enhanced efficiency)
V375A5C300BL (standard efficiency)
Ripple and noise
Output OVP setpoint
Dissipation, standby
Load regulation
Load current
Current limit
Short circuit current
Min
84.0
82.0
6.03
Typ
87.0
83.3
80
6.25
8.8
±0.02
69
69
Max
Unit
%
100
6.47
10.2
±0.2
60
81
81
mV
Volts
Watts
%
Amps
Amps
Amps
Notes
Nominal input; full load; 25°C
p-p; Nominal input; full load; 20MHz bandwidth
25°C; recycle input voltage or PC to restart (>100ms off)
No load
No load to full load; nominal input
Output voltage 95% of nominal
Output voltage <250mV
0
61.2
42
8V
OUT
, 400W (e.g. S375A8C400BL, V375A8C400BL)
Parameter
Efficiency
S375A8C400BL (enhanced efficiency)
V375A8C400BL (standard efficiency)
Ripple and noise
Output OVP setpoint
Dissipation, standby
Load regulation
Load current
Current limit
Short circuit current
Min
84.0
82.5
9.55
Typ
87.0
83.6
288
9.9
17.9
±0.02
57.5
57.5
Max
Unit
%
360
10.3
19
±0.2
50
67.5
67.5
mV
Volts
Watts
%
Amps
Amps
Amps
Notes
Nominal input; full load; 25°C
p-p; Nominal input; full load; 20MHz bandwidth
25°C; recycle input voltage or PC to restart (>100ms off)
No load
No load to full load; nominal input
Output voltage 95% of nominal
Output voltage <250mV
0
51
35
8V
OUT
, 300W (e.g. S375A8C300BL, V375A8C300BL)
Parameter
Efficiency
S375A8C300BL (enhanced efficiency)
V375A8C300BL (standard efficiency)
Ripple and noise
Output OVP setpoint
Dissipation, standby
Load regulation
Output Current
Current limit
Short circuit current
Min
85.0
82
9.36
Typ
87.0
83.1
220
9.7
9.3
±0.02
43.1
43.1
Max
Unit
%
275
10.1
10.8
±0.2
37.5
50.7
50.7
mV
Volts
Watts
%
Amps
Amps
Amps
Notes
Nominal input; full load; 25°C
p-p; Nominal input; full load; 20MHz bandwidth
25°C; recycle input voltage or PC to restart (>100ms off)
No load
No load to full load; nominal input
Output voltage 95% of nominal
Output voltage <250mV
0
38.2
26.2
12V
OUT
, 600W (e.g. S375A12C600BL, V375A12C600BL)
Parameter
Efficiency
S375A12C600BL(enhanced efficiency)
V375A12C600BL (standard efficiency)
Ripple and noise
Output OVP setpoint
Dissipation, standby
Load regulation
Load current
Current limit
Short circuit current
Min
86.0
86.0
13.7
Typ
89.0
87.1
320
14.3
8.7
±0.02
57.5
57.5
Max
Unit
%
400
14.9
13
±0.2
50
67.5
67.5
mV
Volts
Watts
%
Amps
Amps
Amps
Notes
Nominal input; full load; 25°C
p-p; Nominal input; full load; 20MHz bandwidth
25°C; recycle input voltage or PC to restart (>100ms off)
[i=s]This post was last edited by Jacktang on 2021-8-5 10:39[/i]SummaryThe quadcopter is a small-sized, relatively simple-to-control aircraft. The quadcopter designed in this project uses only a TI MS...
I saw a constant voltage and constant current power supply design from TI, but I didn't understand the principle. Can anyone explain the role of LMV431A in this area?...
I bought a LAUNCHXL-CC1312R1 Rev: A development board online. The main chip is: XCC1312R1F3, and the development environment is: CCS920+simplelink_cc13x2_26x2_sdk_3_30_00_03. The current problem is:
1...
I remember that I first came into contact with microcontrollers in 2002. At that time, the only microcontrollers I knew and used were AT98C8051 and AT98C8052. I had only heard of the 51-type microcont...
[i=s]This post was last edited by bobde163 on 2020-11-20 12:10[/i]Today I need to use Fluke F17B+ multimeter to measure uA current, which is different from the measurement of another Uni-T UT890C+. Th...
First of all, I declare that I am a rookie. Although I have worked for some years and have worked very hard, I am still a rookie. There is a cycle that makes me very distressed. When I first joined a ...
Abstract: Smart grid requires the rapid transmission and high sharing of information. To achieve this goal, the wireless access method under the new 3G technology standard - WiMax is studied. First...[Details]
It turns out that environment variables are stored in nor flash. The second partition of the previous mtdparts partition is params. Now modify the environment variables to nand, Search default e...[Details]
Compilation environment: I use (Keil) MDK4.7.2 STM32 library version: I use 3.5.0 1. This article does not give a detailed introduction to the basic knowledge of FLASH. Please refer to relevant ma...[Details]
In the future, cars and machines will be equipped with more and more safe and comfortable driving assistance devices. Comprehensive sensing is essential to support multiple uses such as motion detect...[Details]
Digital television has developed very rapidly around the world. The entire process of television broadcasting, from shooting, production, transmission to broadcasting, is gradually being digitize...[Details]
Regarding the protection of low battery voltage, today I have designed a battery power shortage protection circuit for you. The manual switch is a hiccup protection with an interval of about 3...[Details]
Differential thermal analysis is simple to operate, but in actual work, it is often found that the same sample is measured on different instruments, or different people measure on the same instrument...[Details]
1. Use struct pin_desc to manage key values
1. Define the structure
2. Change the (void *)1 we wrote when applying for interruption to &pins_desc
In ioctl, set the interrupt t...[Details]
NVIDIA cuLitho accelerates highly compute-intensive workloads in semiconductor manufacturing by 40-60x and brings new generative AI algorithms to the industry SAN JOSE, Calif., USA - GTC - Marc...[Details]
The new USB Type-C® (USB-C) cable and connector specification greatly simplifies data interconnection and the way to power electronic products such as digital cameras and ultra-thin tablets (Figure...[Details]
The metaverse is the networking and virtualization of human society. It builds a new social form where humans and machines coexist by generating digital "intelligent bodies" corresponding to physic...[Details]
Here is a design of a logic non-circulating reversible speed control system based on a single-chip microcomputer. The system design adopts a fully digital circuit to realize functions such as digit...[Details]
Also known as a multimeter, multiplexer, etc., it is the most basic and indispensable measuring tool for engineers. Its basic functions include: measuring AC and DC voltage, AC and DC current, resist...[Details]
In fact, in March and April, manufacturers in the field of test and measurement technology applications have been constantly innovating and new technologies have emerged. The booming market demand fo...[Details]
I started to get involved in embedded systems by learning microcontrollers, so I always felt that I should start from the hardware and then move on to the drivers. This learning process made it eas...[Details]