Off-line systems with PFC front ends, industrial and process control, distributed power,
medical, ATE, communications, defense and aerospace.
For details on proper operation please refer to the:
Design Guide & Applications Manual for Maxi, Mini, Micro Family.
Absolute Maximum Ratings
Parameter
+IN to –IN voltage
PC to –IN voltage
PR to –IN voltage
SC to –OUT voltage
–Sense to –OUT voltage
Isolation voltage
IN to OUT
IN to base
OUT to base
Operating Temperature
Storage Temperature
Pin soldering temperature
Mounting torque
Rating
–0.5 to +525
–0.5 to +7.0
–0.5 to +7.0
–0.5 to +1.5
1.0
3000
1500
500
–55 to +100
–65 to +125
500 [260]
750 [390]
5 [0.57]
Unit
V
DC
V
DC
V
DC
V
DC
V
DC
V
RMS
V
RMS
V
RMS
°C
°C
°F [°C]
°F [°C]
in.lbs [N.m]
Test voltage
Test voltage
Test voltage
M-Grade
M-Grade
<5sec; wave solder
<7sec; hand solder
6 each
Notes
Product Overview
These DC-DC converter modules use advanced
power processing, control and packaging
technologies to provide the performance,
flexibility, reliability and cost effectiveness of a
mature power component.
High-frequency ZCS/ZVS switching provides
high power density with low noise and
high efficiency.
Part Numbering
e.g. V375A12T600BL2
375A
Product Grade Temperatures (°C)
Grade
Operating
Storage
E
= –10 to +100 –20 to +125
C
= –20 to +100 –40 to +125
T
= –40 to +100 –40 to +125
H
= –40 to +100 –55 to +125
M
= –55 to +100 –65 to +125
B
Output Power
P
OUT
160W
200W, 264W
300W, 400W
300W, 400W
400W, 600W
400W, 600W
400W, 600W
400W, 600W
600W
400W, 500W, 600W
400W, 600W
600W
Pin Style
Finish
Blank:
Short
Tin/Lead
L:
Long
Tin/Lead
S:
Short ModuMate
Gold
N:
Long ModuMate
Gold
F:
Short RoHS
Gold
G:
Long RoHS
Gold
K:
Extra Long RoHS
Gold
Baseplate
Blank:
Slotted
2:
Threaded
3:
Through-hole
Product Type
V
= Standard
S
= Enhanced
efficiency
(avail. ≤12
V
OUT
only)
Output Voltage
2
= 2V
3V3
= 3.3V
5
= 5V
8
= 8V
12
= 12V
15
= 15V
24
= 24V
28
= 28V
32
= 32V
36
= 36V
48
= 48V
54
= 54V
V
OUT
2V
3.3V
5V
8V
12V
15V
24V
28V
32V
36V
48V
54V
Note:
Product images may not highlight current product markings.
375V Maxi Family
Page 1 of 15
Rev 10.8
02/2021
375V Input
Module Family Electrical Characteristics
Electrical characteristics apply over the full operating range of input voltage, output load (resistive) and baseplate temperature, unless otherwise specified.
All temperatures refer to the operating temperature at the center of the baseplate.
Module Input Specifications
Parameter
Operating input voltage
Input surge withstand
Undervoltage turn-on
Undervoltage turn-off
Overvoltage turn-off/on
Disabled input current
204.7
429.2
242.5
212.2
446.3
467.5
1.1
Min
250
Typ
375
Max
425
500
247.5
Unit
V
DC
V
DC
V
DC
V
DC
V
DC
mA
PC pin low
<100ms
Notes
Module Output Specifications
Parameter
Output voltage set point
Line regulation
Temperature regulation
Power sharing accuracy
Programming range
10
±0.02
±0.002
±2
Min
Typ
Max
1
±0.2
±0.005
±5
110
Unit
%
%
% / °C
%
%
Notes
Of nominal output voltage. Nominal input; full load; 25°C
Low line to high line; full load
Over operating temperature range
10 – 100% of full load
Of nominal output voltage. For trimming below 90%
of nominal, a minimum load of 10% of maximum
rated power may be required.
Externally applied
Externally applied
Externally applied
Externally applied
Externally applied
Externally applied
Externally applied
Externally applied
Externally applied
Externally applied
Externally applied
Externally applied
+OUT to –OUT, +Sense to –OUT — Absolute Maximum Ratings
2V
3.3V
5V
8V
12V
15V
24V
28V
32V
36V
48V
54V
–0.5 to 3.1
–0.5 to 4.7
–0.5 to 7.0
–0.5 to 10.9
–0.5 to 16.1
–0.5 to 20.0
–0.5 to 31.7
–0.5 to 36.9
–0.5 to 41.9
–0.5 to 47.1
–0.5 to 62.9
–0.5 to 70.2
V
DC
V
DC
V
DC
V
DC
V
DC
V
DC
V
DC
V
DC
V
DC
V
DC
V
DC
V
DC
Note:
The permissible load current must never be exceeded during normal, abnormal or test conditions. For additional output related application information,
please refer to output connections on page 10.
Thermal Resistance and Capacity
Parameter
Baseplate to sink; flat, greased surface
Baseplate to sink; thermal pad (P/N 20263)
Baseplate to ambient
Baseplate to ambient; 1000LFM
Thermal capacity
Min
Typ
0.08
0.07
4.9
1.1
165
Max
Unit
°C/Watt
°C/Watt
°C/Watt
°C/Watt
Watt-sec/°C
375V Maxi Family
Page 2 of 15
Rev 10.8
02/2021
375V Input
Module Family Electrical Characteristics (Cont.)
Module Control Specifications
Parameter
Min
Typ
Max
Unit
Notes
Primary Side (PC = Primary Control; PR = Parallel)
PC bias voltage
current limit
PC module disable
PC module enable delay
PC module alarm
PC resistance
PR emitter amplitude
PR emitter current
PR receiver impedance
PR receiver threshold
PR drive capability
Secondary Side (SC = Secondary Control)
SC bandgap voltage
SC resistance
SC capacitance
SC module alarm
1.21
990
1.23
1000
0.033
0
1.25
1010
V
DC
Ω
µF
V
DC
With open trim; referenced to –Sense. See Figure 7
Referenced to –Sense
0.9
5.7
150
375
2.4
500
2.5
625
2.6
12
1.0
5.9
5.50
1.5
2.3
5.75
2.1
2.6
4
6.00
3.0
2.9
7
0.5
1.1
6.1
V
DC
mA
V
DC
ms
V
AVG
MΩ
Volts
mA
Ω
Volts
modules
25°C
Minimum pulse width: 20ns
Without PR buffer amplifier
UV, OV, OT, module fault. See Figures 3 and 5
See Figure 3, converter off or fault mode
PR load >30Ω, <30pF
PC current = 1.0mA
PC voltage = 5.5V
During normal operation
Switch must be able to sink ≥4mA. See Figure 2
Module General Specifications
Parameter
Remote sense (total drop)
Isolation test voltage (IN to OUT)*
Isolation test voltage (IN to base)*
Isolation test voltage (OUT to base)*
Isolation resistance
Weight (E, C, T grade)
Weight (H, M grade)
6.5
[184.3]
7.4
[209.3]
100
3000
1500
500
10
7.3
[207.5]
8.2
[232.5]
115
cURus, cTÜVus, CE
8.1
[230.7]
9.0
[255.7]
Min
Typ
Max
0.5
Unit
V
DC
V
RMS
V
RMS
V
RMS
MΩ
ounces
[grams]
ounces
[grams]
°C
See Figures 3 and 5. Do not operate coverter >100°C.
UL60950-1, EN60950-1, CSA60950-1, IEC60950-1.
With appropriate fuse in series with the +Input
Notes
0.25V per leg (sense leads must be connected to
respective, output terminals)
Complies with reinforced insulation requirements
Complies with basic insulation requirements
Complies with operational insulation requirements
IN to OUT, IN to baseplate, OUT to baseplate
Temperature limiting
Agency approvals
* Isolation test voltage, 1 minute or less.
Note:
Specifications are subject to change without notice.
375V Maxi Family
Page 3 of 15
Rev 10.8
02/2021
375V Input
Module-Specific Operating Specifications
2V
OUT
, 160W (e.g. S375A2C160BL, V375A2C160BL)
Parameter
Efficiency
S375A2C160BL (enhanced efficiency)
V375A2C160BL (standard efficiency)
Ripple and noise
Output OVP set point
Dissipation, standby
Load regulation
Load current
Current limit
Short circuit current
Min
76.0
72.0
2.7
Typ
80.0
73.7
200
2.8
8.4
±0.02
92
92
Max
Unit
%
250
2.9
11
±0.2
80
108
108
mV
Volts
Watts
%
Amps
Amps
Amps
Notes
Nominal input; 75% load; 25°C
P-P; Nominal input; full load; 20MHz bandwidth
25°C; recycle input voltage or PC to restart (>100ms off)
No load
No load to full load; nominal input
Output voltage 95% of nominal
Output voltage <250mV
0
81.6
56
3.3V
OUT
, 264W (e.g. S375A3V3C264BL, V375A3V3C264BL)
Parameter
Efficiency
S375A3V3C264BL (enhanced efficiency)
V375A3V3C264BL (standard efficiency)
Ripple and noise
Output OVP set point
Dissipation, standby
Load regulation
Load current
Current limit
Short circuit current
Min
83.0
80.0
4.14
Typ
86.0
81.0
120
4.3
4.9
±0.02
92
92
Max
Unit
%
150
4.46
7.8
±0.2
80
104
104
mV
Volts
Watts
%
Amps
Amps
Amps
Notes
Nominal input; 75% load; 25°C
P-P; Nominal input; full load; 20MHz bandwidth
25°C; recycle input voltage or PC to restart (>100ms off)
No load
No load to full load; nominal input
Output voltage 95% of nominal
Output voltage <250mV
0
81.6
56
3.3V
OUT
, 200W (e.g. S375A3V3C200BL, V375A3V3C200BL)
Parameter
Efficiency
S375A3V3C200BL (enhanced efficiency)
V375A3V3C200BL (standard efficiency)
Ripple and noise
Output OVP set point
Dissipation, standby
Load regulation
Load current
Current limit
Short circuit current
Min
82.0
78.0
4.14
Typ
86.0
78.9
60
4.3
7.9
±0.02
69.7
69.7
Max
Unit
%
75
4.46
9.1
±0.2
60.6
81.9
81.9
mV
Volts
Watts
%
Amps
Amps
Amps
Notes
Nominal input; 75% load; 25°C
P-P; Nominal input; full load; 20MHz bandwidth
25°C; recycle input voltage or PC to restart (>100ms off)
No load
No load to full load; nominal input
Output voltage 95% of nominal
Output voltage <250mV
0
61.8
42.4
5V
OUT
, 400W (e.g. S375A5C400BL, V375A5C400BL)
Parameter
Efficiency
S375A5C400BL (enhanced efficiency)
V375A5C400BL (standard efficiency)
Ripple and noise
Output OVP set point
Dissipation, standby
Load regulation
Load current
Current limit
Short circuit current
Min
84.0
80.0
6.26
Typ
86.0
82.0
210
6.49
6.6
±0.02
92
97
Max
Unit
%
270
6.72
9
±0.2
80
108
108
mV
Volts
Watts
%
Amps
Amps
Amps
Notes
Nominal input; 75% load; 25°C
P-P; Nominal input; full load; 20MHz bandwidth
25°C; recycle input voltage or PC to restart (>100ms off)
No load
No load to full load; nominal input
Output voltage 95% of nominal
Output voltage <250mV
0
81.6
56
375V Maxi Family
Page 4 of 15
Rev 10.8
02/2021
375V Input
Module-Specific Operating Specifications (Cont.)
5V
OUT
, 300W (e.g. S375A5C300BL, V375A5C300BL)
Parameter
Efficiency
S375A5C300BL (enhanced efficiency)
V375A5C300BL (standard efficiency)
Ripple and noise
Output OVP set point
Dissipation, standby
Load regulation
Load current
Current limit
Short circuit current
Min
84.0
82.0
6.03
Typ
87.0
83.3
80
6.25
8.8
±0.02
69
69
Max
Unit
%
100
6.47
10.2
±0.2
60
81
81
mV
Volts
Watts
%
Amps
Amps
Amps
Notes
Nominal input; 75% load; 25°C
P-P; Nominal input; full load; 20MHz bandwidth
25°C; recycle input voltage or PC to restart (>100ms off)
No load
No load to full load; nominal input
Output voltage 95% of nominal
Output voltage <250mV
0
61.2
42
8V
OUT
, 400W (e.g. S375A8C400BL, V375A8C400BL)
Parameter
Efficiency
S375A8C400BL (enhanced efficiency)
V375A8C400BL (standard efficiency)
Ripple and noise
Output OVP set point
Dissipation, standby
Load regulation
Load current
Current limit
Short circuit current
Min
84.0
82.5
9.55
Typ
87.0
83.6
288
9.9
17.9
±0.02
57.5
57.5
Max
Unit
%
360
10.3
19
±0.2
50
67.5
67.5
mV
Volts
Watts
%
Amps
Amps
Amps
Notes
Nominal input; 75% load; 25°C
P-P; Nominal input; full load; 20MHz bandwidth
25°C; recycle input voltage or PC to restart (>100ms off)
No load
No load to full load; nominal input
Output voltage 95% of nominal
Output voltage <250mV
0
51
35
8V
OUT
, 300W (e.g. S375A8C300BL, V375A8C300BL)
Parameter
Efficiency
S375A8C300BL (enhanced efficiency)
V375A8C300BL (standard efficiency)
Ripple and noise
Output OVP set point
Dissipation, standby
Load regulation
Output Current
Current limit
Short circuit current
Min
85.0
82
9.36
Typ
87.0
83.1
220
9.7
9.3
±0.02
43.1
43.1
Max
Unit
%
275
10.1
10.8
±0.2
37.5
50.7
50.7
mV
Volts
Watts
%
Amps
Amps
Amps
Notes
Nominal input; 75% load; 25°C
P-P; Nominal input; full load; 20MHz bandwidth
25°C; recycle input voltage or PC to restart (>100ms off)
No load
No load to full load; nominal input
Output voltage 95% of nominal
Output voltage <250mV
0
38.2
26.2
12V
OUT
, 600W (e.g. S375A12C600BL, V375A12C600BL)
Parameter
Efficiency
S375A12C600BL (enhanced efficiency)
V375A12C600BL (standard efficiency)
Ripple and noise
Output OVP set point
Dissipation, standby
Load regulation
Load current
Current limit
Short circuit current
Min
86.0
86.0
13.7
Typ
89.0
87.1
450
14.3
8.7
±0.02
57.5
57.5
Max
Unit
%
560
14.9
13
±0.2
50
67.5
67.5
mV
Volts
Watts
%
Amps
Amps
Amps
Notes
Nominal input; 75% load; 25°C
P-P; Nominal input; full load; 20MHz bandwidth
25°C; recycle input voltage or PC to restart (>100ms off)
[i=s]This post was last edited by wsmysyn on 2019-4-2 10:24[/i] The first post of this year is actually about a bug{:1_133:} I just changed my avatar, and it took five minutes to succeed. Then, after ...
STM32F103VBT6 resets by pressing the button. After releasing the button, it takes three or four seconds for the MCU to execute the program. During these three or four seconds, the voltage of the JNTRS...
I applied for this board first, but I didn’t write the reason well at that time. I was lucky to get it through the live application. Next, I will share my learning experience through some articles. I ...
Industrial design is evolving faster than ever to deliver beautiful and reliable human-machine interfaces (HMIs), especially in home appliances and building security systems. Mechanical buttons and kn...
7660 chip common mode inductor manufacturer
Dongguan Yite Electronics Co., Ltd. is a manufacturer specializing in the design and production of various chip inductors and coils. Its products are mainly...
Before I start, I'd like to apologize. I've been on a business trip these days, so the testing plan this week will be a little later.
According to the test plan, the high frequency distortion of the s...
On August 24, Siemens EDA’s annual event, the 2023 Siemens EDA Forum, kicked off in Pudong, Shanghai. This summit is the return of Siemens EDA after a three-year absence offline. The conference has t...[Details]
According to Japanese media reports on December 27, due to the cold wave, many parts of Japan have seen heavy snowfall. Some areas in Hyogo Prefecture and Shiga Prefecture have even seen record-break...[Details]
Robotaxi is booming again.
With the debut of Tesla's Robotaxi prototype Cybercab, vehicle manufacturers' Robotaxi businesses have successively revealed new plans and progress.
...[Details]
SpaceX canceled a rocket launch on Sunday after computers detected an engine power problem just minutes before an attempt to launch its sixth batch of StarLink internet broadband satellites. The F...[Details]
1. Introduction to CAN bus
Controller Area Network (CAN) is a serial data communication protocol developed by Bosch in Germany in the early 1980s to solve the data exchange between numerous co...[Details]
Principle analysis: The signal processing circuit with zero adjustment and full-scale adjustment functions is an AC voltage measuring head. IN+, IN-AC voltage terminals (no positive or negative);...[Details]
In addition to the almost confirmed release of the Galaxy S21 series this month, Samsung may launch the Galaxy M series devices in India before that. In fact, the phone is more likely to be officiall...[Details]
China Energy Storage Network:
In May 2018, General Secretary Xi Jinping pointed out at the National Ecological and Environmental Protection Conference that "ecological civilization constructi...[Details]
In the past, MediaTek’s flagship processors were usually used in manufacturers’ mid-range models, but the Dimensity 9000 will rewrite this situation, and related terminals are already on the w...[Details]
I/O control is the most basic and core thing for a microcontroller. In fact, apart from AD DA conversion, most other things can be done by the I/O port. I/O control is simple but can be varied. I/O...[Details]
As a means of emergency communication, shortwave communication plays an irreplaceable role in modern communication systems and plays an important role in military, maritime, mining, civil defense a...[Details]
The original intention of establishing AEC was to solve the problem of electronic component qualification certification. If a universal certification specification can be established, each electron...[Details]
The industry-renowned Arm® Tech Symposia annual technology conference will
kick off at the Ritz-Carlton Hotel in Pudong, Shanghai on November 19, 2024, and will move to the Renaissance Shenzhen...[Details]