The MAX7034 receiver reference design (RD) is a self-contained evaluation platform for exercising the product as a tube motor receiver module. This receiver (Rx) board includes a simple power supply, data interface, and an antenna connection, all in a small modular form factor that allows the receiver to be placed inside of a tubular enclosure. The Rx board was manufactured to be usable as-is. Gerber files are available for simple cut-and-paste of the radio system design.
The MAX7034 315MHz/434MHz amplitude-shift-keyed (ASK) superheterodyne receiver is configured in a near-standard form similar to the typical application circuit illustrated in the MAX7034 data sheet. The system is targeted for 433.92MHz operation and a 1kbps (NRZ) data rate. Four resistor connections are included in the design to allow flexible use of certain pins. Two connections have resistor footprints but are wired as shorts: R5 connects IR_SEL to VDD and R6 connects EN_REG to VDD. Two other connections are left open (unpopulated): R4 can connect DSP to DATAOUT for hysteresis and R7 can connect DSN to 3V3 for squelch. The module is designed to have a small footprint with minimal connections, to include a pair of pins for antenna/ground connections and a triplet of pins for ground/RX data/power connections. The board uses a 5V power supply.
Populated Rev-A2 board
Devices | Class | introduce | Datasheet |
---|---|---|---|
MAX7034 | 315MHz/434MHz ASK Superheterodyne Receiver | Download |
All reference designs on this site are sourced from major semiconductor manufacturers or collected online for learning and research. The copyright belongs to the semiconductor manufacturer or the original author. If you believe that the reference design of this site infringes upon your relevant rights and interests, please send us a rights notice. As a neutral platform service provider, we will take measures to delete the relevant content in accordance with relevant laws after receiving the relevant notice from the rights holder. Please send relevant notifications to email: bbs_service@eeworld.com.cn.
It is your responsibility to test the circuit yourself and determine its suitability for you. EEWorld will not be liable for direct, indirect, special, incidental, consequential or punitive damages arising from any cause or anything connected to any reference design used.
Supported by EEWorld Datasheet