LCD12864 LCD display SHT11 temperature and humidity sensor program

Publisher:Bby1978Latest update time:2016-01-22 Source: eefocusKeywords:LCD12864 Reading articles on mobile phones Scan QR code
Read articles on your mobile phone anytime, anywhere
Note: Lower versions of Keil software cannot be compiled successfully because they cannot handle floating-point operations.
#include
#include
 
#define uint unsigned int
#define uchar unsigned char
#define noACK 0
#define ACK   1            
#define STATUS_REG_W 0x06  
#define STATUS_REG_R 0x07   
#define MEASURE_TEMP 0x03  
#define MEASURE_HUMI 0x05  
#define RESET        0x1e   
 
enum {TEMP,HUMI};
 
typedef union //Defines a shared type
{
unsigned int i;
float f;
} value;
 
sbit lcdrs=P2^0;
sbit lcdrw=P2^1;
sbit lcden=P2^2;
sbit SCK = P1^0;
sbit DATA = P1^1;
 
uchar table2[]="SHT11 temperature and humidity detection";
uchar table3[]="Temperature:      ℃";
uchar table4[]="Humidity is:";
uchar table5[]=".";
uchar wendu[6];  
uchar shidu[6];  
 
void delay(int z)  
{
int x,y;
for(x=z;x>0;x--)
for(y=125;y>0;y--);
}
 
void delay_50us(uint t)
{
uint j;
for(;t>0;t--)
for(j=19;j>0;j--);
}
 
void delay_50ms(uint t)
{
uint j;
for(;t>0;t--)
for(j=6245;j>0;j--);
}
 
void write_12864com(uchar com)
{
lcdrs=0;
lcdrw=0;
delay_50us(1);
P0=com;
lcden=1;
delay_50us(10);
lcden=0;
delay_50us(2);
}
 
void write_dat(uchar dat)
{
lcdrs=1;
lcdrw=0;
delay_50us(1);
P0=dat;
lcden=1;
delay_50us(10);
lcden=0;
delay_50us(2);
}
 
void init12864lcd(void)
{
delay_50ms(2);
write_12864com(0x30);
delay_50us(4);
write_12864com(0x30);
delay_50us(4);
write_12864com(0x0f);
delay_50us(4);
write_12864com(0x01);
delay_50us(240);
write_12864com(0x06);
delay_50us(10);
write_12864com(0x0c);
delay_50us(10);
}
 
 
void display1(void)
{
uchar i;
write_12864com(0x80);
for(i=0;i<18;i++)
{
write_dat(table2[i]);
delay_50us(1);
}
}
void display2(void)
{
uchar i;
write_12864com(0x90);
for(i=0;i<18;i++)
{
write_dat(table3[i]);
delay_50us(1);
}
}
void display3(void)
{
uchar i;
write_12864com(0x88);
for(i=0;i<8;i++)
{
write_dat(table4[i]);
delay_50us(1);
}
}
 
void displaywendu(void)
{
uchar i;
write_12864com(0x94);
for(i=0;i<3;i++)
{
write_dat(wendu[i]);
delay_50us(1);
}
for(i=0;i<1;i++)
{
write_dat(table5[i]);
delay_50us(1);
}
for(i=4;i<5;i++)
{
write_dat(wendu[i]);
delay_50us(1);
}
}
 
 
void displayshidu(void)
{
uchar i;
write_12864com(0x8C);
for(i=0;i<3;i++)
{
write_dat(shidu[i]);
delay_50us(1);
}
for(i=0;i<1;i++)
{
write_dat(table5[i]);
delay_50us(1);
}
for(i=4;i<5;i++)
{
write_dat(shidu[i]);
delay_50us(1);
}
}
 
//Write byte program
char s_write_byte(unsigned char value)   
unsigned char i,error=0; 
for (i=0x80;i>0;i>>=1)            //The high bit is 1, and the circular right shift
if (i&value) DATA=1;          // AND the number to be sent, the result is the bit to be sent
   else DATA=0;                        
   SCK=1;                          
   _nop_();_nop_();_nop_();        //Delay 3us 
   SCK=0;
}
DATA=1;                          //Release data line
SCK=1;                            
error=DATA;                      //Check the response signal to confirm that the communication is normal
_nop_();_nop_();_nop_();
SCK=0;        
DATA=1;
return error;                    //error=1 Communication error
}
 
//Read byte program
char s_read_byte(unsigned char ack)
unsigned char i,val=0;
DATA=1;                          //Release data line
for(i=0x80;i>0;i>>=1)            //The high bit is 1, and the loop moves right
SCK=1;                         
   if(DATA) val=(val|i);            //Read the value of a data line 
   SCK=0;       
}
DATA=!ack;                        //If it is verification, end the communication after reading;
SCK=1;                            
_nop_();_nop_();_nop_();          //Delay 3us 
SCK=0;   
_nop_();_nop_();_nop_();       
DATA=1;                          //Release data line
return val;
}
 
//Start the transfer
void s_transstart(void)
   DATA=1; SCK=0;                  //Prepare
   _nop_();
 SCK=1;
   _nop_();
   DATA=0;
   _nop_();
 SCK=0; 
 _nop_();_nop_();_nop_();
   SCK=1;
   _nop_();
 DATA=1;     
 _nop_();
   SCK=0;     
}
 
 
//Reset the connection
void s_connectionreset(void)
unsigned char i; 
DATA=1; SCK=0;                    //Prepare
for(i=0;i<9;i++)                  //DATA remains high, SCK clock triggers 9 times, sending starts transmission, communication is reset
SCK=1;
   SCK=0;
}
s_transstart();                  //Start transmission
}
 
 
//Soft reset procedure
char s_softreset(void)
unsigned char error=0; 
s_connectionreset();              //Start connection reset
error+=s_write_byte(RESET);      //Send reset command
return error;                    //error=1 Communication error
}
 
//Temperature and humidity measurement
char s_measure(unsigned char *p_value, unsigned char *p_checksum, unsigned char mode)
unsigned error=0;
unsigned int i;
 
s_transstart();                  //Start transmission
switch(mode)                      //Select the send command
       {
case TEMP : error+=s_write_byte(MEASURE_TEMP); break;   //Measure temperature
           case HUMI ​​: error+=s_write_byte(MEASURE_HUMI); break;   //Measure humidity
   default    : break; 
}
for (i=0;i<65535;i++) if(DATA==0) break;        //Wait for the measurement to end
if(DATA) error+=1;                              // If the data line is not pulled low for a long time, it means the measurement is wrong 
*(p_value) =s_read_byte(ACK);    //Read the first byte, high byte (MSB)
*(p_value+1)=s_read_byte(ACK);    //Read the second byte, low byte (LSB)
*p_checksum =s_read_byte(noACK); //read CRC checksum
return error; // error=1 Communication error
}
 
// Temperature and humidity value scale conversion and temperature compensation
void calc_sth10(float *p_humidity, float *p_temperature)
const float C1=-4.0;              // 12-bit humidity accuracy correction formula
const float C2=+0.0405;          // 12-bit humidity accuracy correction formula
const float C3=-0.0000028;        // 12-bit humidity accuracy correction formula
const float T1=+0.01;            // 14-bit temperature accuracy 5V condition   correction formula
const float T2=+0.00008;          // 14-bit temperature accuracy 5V condition   correction formula
 
float rh=*p_humidity;            // rh:      12-bit humidity 
float t=*p_temperature;          // t:      14-bit temperature
float rh_lin;                    // rh_lin: humidity linear value
float rh_true;                    // rh_true: humidity true value
float t_C;                        // t_C   : temperature in °C
 
t_C=t*0.01 - 40;                  //compensation temperature
rh_lin=C3*rh*rh + C2*rh + C1;    //Relative humidity nonlinear compensation
rh_true=(t_C-25)*(T1+T2*rh)+rh_lin;   //Relative humidity temperature dependence compensation
if(rh_true>100)rh_true=100;      //maximum humidity correction
if(rh_true<0.1)rh_true=0.1;      //minimum humidity correction
 
*p_temperature=t_C;              //Return temperature result
*p_humidity=rh_true;              //Return humidity result
}
 
void main(void)
unsigned int temp,humi;
value humi_val,temp_val; //Define two communities, one for humidity and one for temperature
unsigned char error;    //Used to check if an error occurs
unsigned char checksum; //CRC  
init12864lcd();
display1();
display2();
display3();
s_connectionreset();   //Start connection reset
while(1)
{
error=0;   //Initialize error=0, that is, no error
error+=s_measure((unsigned char*)&temp_val.i,&checksum,TEMP); //temperature measurement
error+=s_measure((unsigned char*)&humi_val.i,&checksum,HUMI); //humidity measurement
   if(error!=0) s_connectionreset();                ////If an error occurs, the system is reset
   else
   
humi_val.f=(float)humi_val.i;                  //Convert to floating point number
     temp_val.f=(float)temp_val.i;                  //Convert to floating point number
     calc_sth10(&humi_val.f,&temp_val.f);            //Correction of relative humidity and temperature
   temp=temp_val.f*10;
     humi=humi_val.f*10;
     wendu[0]=temp/1000+'0';    //temperature in hundreds 
     wendu[1]=temp00/100+'0';    //Temperature tens digit
   wendu[2]=temp0/10+'0'; //Temperature units
     wendu[3]=0x2E; //decimal point
   wendu[4]=temp+'0'; //The first decimal place of temperature
displaywendu();  
shidu[0]=humi/1000+'0';    //humidity in hundreds
     shidu[1]=humi00/100+'0';    //humidity tens digit
   shidu[2]=humi0/10+'0'; //Humidity units
     shidu[3]=0x2E; //decimal point
   shidu[4]=humi+'0'; //The first decimal place of humidity
displayshidu();
   }  
delay(800);                            //Wait long enough for the next conversion                   
}
}
Keywords:LCD12864 Reference address:LCD12864 LCD display SHT11 temperature and humidity sensor program

Previous article:Traffic light digital tube program based on 51 single chip microcomputer
Next article:51 single chip microcomputer program - button control LED light

Recommended ReadingLatest update time:2024-11-16 18:06

STM32 drives LCD12864 display
When we make an electronic product, we often need to realize the function of human-computer interaction. In addition to outputting to the host computer for display through the computer, the display is also a very good way for human-computer interaction, which can be used in some occasions where computers cannot be use
[Microcontroller]
Latest Microcontroller Articles
  • Download from the Internet--ARM Getting Started Notes
    A brief introduction: From today on, the ARM notebook of the rookie is open, and it can be regarded as a place to store these notes. Why publish it? Maybe you are interested in it. In fact, the reason for these notes is ...
  • Learn ARM development(22)
    Turning off and on interrupts Interrupts are an efficient dialogue mechanism, but sometimes you don't want to interrupt the program while it is running. For example, when you are printing something, the program suddenly interrupts and another ...
  • Learn ARM development(21)
    First, declare the task pointer, because it will be used later. Task pointer volatile TASK_TCB* volatile g_pCurrentTask = NULL;volatile TASK_TCB* vol ...
  • Learn ARM development(20)
    With the previous Tick interrupt, the basic task switching conditions are ready. However, this "easterly" is also difficult to understand. Only through continuous practice can we understand it. ...
  • Learn ARM development(19)
    After many days of hard work, I finally got the interrupt working. But in order to allow RTOS to use timer interrupts, what kind of interrupts can be implemented in S3C44B0? There are two methods in S3C44B0. ...
  • Learn ARM development(14)
  • Learn ARM development(15)
  • Learn ARM development(16)
  • Learn ARM development(17)
Change More Related Popular Components

EEWorld
subscription
account

EEWorld
service
account

Automotive
development
circle

About Us Customer Service Contact Information Datasheet Sitemap LatestNews


Room 1530, 15th Floor, Building B, No.18 Zhongguancun Street, Haidian District, Beijing, Postal Code: 100190 China Telephone: 008610 8235 0740

Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved 京ICP证060456号 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号