zip

Classification of wheat collision sound signal based on BP neural network

  • 2013-09-22
  • 577.56KB
  • Points it Requires : 1

Wheat suffers huge losses due to various disasters during the storage stage, which reduces the quality of flour. It is urgent to detect and separate damaged wheat kernels in time. Based on the extraction of four types of wheat collision sound signals, this paper uses digital signal processing methods to extract effective features of the collision sound signals of intact wheat kernels, insect-damaged kernels, moldy kernels and germinated kernels. Finally, BP neural network is used for classification, and a good recognition rate is achieved for the recognition of the three types of wheat. The application results show that BP neural network can better distinguish damaged wheat kernels from intact wheat kernels.

unfold

You Might Like

Uploader
nkyqsl
 

Recommended ContentMore

Popular Components

Just Take a LookMore

EEWorld
subscription
account

EEWorld
service
account

Automotive
development
circle

About Us Customer Service Contact Information Datasheet Sitemap LatestNews


Room 1530, 15th Floor, Building B, No.18 Zhongguancun Street, Haidian District, Beijing, Postal Code: 100190 China Telephone: 008610 8235 0740

Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved 京ICP证060456号 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号
×