pdf

Improved DBSCAN algorithm for bus station clustering

  • 2013-09-22
  • 219.21KB
  • Points it Requires : 2

This paper proposes an improved DBSCAN algorithm suitable for bus station clustering, which reduces the search radius ε, thereby improving the clustering accuracy. At the same time, it determines the merging of connected clusters through shared objects, prevents over-segmentation of clusters, reduces noise points, effectively shields the algorithm\'s sensitivity to input parameters, improves the quality of clustering results, and reduces the impact of density gaps on clustering results. The high execution efficiency of the DBSCAN algorithm is maintained and applied to bus station clustering in the intelligent bus transfer query engine. The clustering accuracy rate is improved by 16%, which verifies the effectiveness of the new algorithm. Keywords: clustering; DBSCAN algorithm; parameter sensitivity; data mining

unfold

You Might Like

Uploader
nishisb
 

Recommended ContentMore

Popular Components

Just Take a LookMore

EEWorld
subscription
account

EEWorld
service
account

Automotive
development
circle

About Us Customer Service Contact Information Datasheet Sitemap LatestNews


Room 1530, 15th Floor, Building B, No.18 Zhongguancun Street, Haidian District, Beijing, Postal Code: 100190 China Telephone: 008610 8235 0740

Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved 京ICP证060456号 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号
×