pdf

Comparative application study of SVM and BP algorithms in oil and gas identification

  • 2013-09-19
  • 199.21KB
  • Points it Requires : 2

In the field of oil and gas exploration, when using logging data to classify and identify oil and gas layers, the use of traditional methods has certain limitations. This paper uses the support vector machine (SVM) method in the data mining classification algorithm and applies it to the identification of oil and gas layers in the Tarim Basin in Xinjiang. In the experiment, the support vector machine algorithm and the BP neural network algorithm were used for comparative testing. The results show that the oil and gas layer identification model established by the support vector machine algorithm has higher recognition test performance, which reflects the superiority of the support vector machine in dealing with multi-class classification problems.

unfold

You Might Like

Uploader
crazyjackson
 

Recommended ContentMore

Popular Components

Just Take a LookMore

EEWorld
subscription
account

EEWorld
service
account

Automotive
development
circle

About Us Customer Service Contact Information Datasheet Sitemap LatestNews


Room 1530, 15th Floor, Building B, No.18 Zhongguancun Street, Haidian District, Beijing, Postal Code: 100190 China Telephone: 008610 8235 0740

Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved 京ICP证060456号 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号
×