2. High resistance to noise due to high common rejection
voltage (CMR:MIN. 10kV/µs)
3. Compact dual-in line package
4. Isolation voltage(Viso:5kVrms)
5. Recognized by UL, file No. E64380
Low Input Current Type
Photocoupler
s
Outline Dimensions
Anode mark
1.2
±0.3
0.6
±0.2
(Unit : mm)
1
4
8 1 7 1
2
3
s
Applications
1. Programmable controllers
2. Facsimiles
3. Telephones
6.5
±0.5
7.62
±0.3
2.54
±0.25
4.58
±0.5
4.58
±0.5
0.5
TYP.
3.5
±0.5
2.7
±0.5
Model No.
Rank mark
PC81710NSZ
A, B, C or no mark
A
PC81711NSZ
B
PC81712NSZ
C
PC81713NSZ
A or B
PC81715NSZ
B or C
PC81716NSZ
PC81718NSZ
A, B or C
Ic (mA)
0.5 to 3.0
0.6 to 1.5
0.8 to 2.0
1.0 to 2.5
0.6 to 2.0
0.8 to 2.5
0.6 to 2.5
Conditions
θ
Epoxy resin
0.26
±0.1
0.5
±0.1
θ
I
F
=0.5mA
V
CE
=5V
T
a
=25°C
θ
: 0 to 13°
Internal connection diagram
1
4
1
2
3
2
3
4
s
Absolute Maximum Ratings
(Ta=25°C)
Unit
mA
mA
V
mW
V
V
mA
mW
mW
°C
°C
kV
rms
°C
Anode
Cathode
Emitter
Collector
Parameter
Symbol
Rating
I
F
10
Forward current
*1
Peak forward current
I
FM
200
Input
6
V
R
Reverse voltage
Power dissipation
P
15
Collector-emitter voltage V
CEO
70
Emitter-collector voltage V
ECO
6
Output
50
I
C
Collector current
P
C
150
Collector power dissipation
170
Total power dissipation
P
tot
Operating temperature
−30
to
+100
T
opr
−55
to
+125
T
stg
Storage temperature
*2
V
iso
Isolation voltage
5
*3
260
Soldering temperature T
sol
*1 Pulse width<=100µs, Duty ratio=0.001
*2 40 to 60%RH, AC for 1 minute, f=60Hz
*3 For 10s
In the absence of confirmation by device specification sheets, SHARP takes no responsibility for any defects that may occur in equipment using any SHARP
devices shown in catalogs, data books, etc. Contact SHARP in order to obtain the latest device specification sheets before using any SHARP device.
Internet Internet address for Electronic Components Group http://www.sharp.co.jp/ecg/
Notice
3.0
±0.5
s
Rank Table
PC8171
X
NSZ Series
s
Electro-optical Characteristics
Parameter
Symbol
Forward voltage
V
F
Reverse current
I
R
Terminal capacitance
C
t
Collector dark current
I
CEO
Collector-emitter breakdown voltage
BV
CEO
Emitter-collector breakdown voltage
BV
ECO
I
C
Collector current
Collector-emitter saturation voltage V
CE (sat)
Isolation resistance
R
ISO
C
f
Floating capacitance
tr
Rise time
Response time
tf
Fall time
*1
(Ta=25°C)
Conditions
I
F
=10mA
V
R
=4V
V=0, f=1kHz
V
CE
=50V,
I
F
=0
I
C
=0.1mA, I
F
=0
I
E
=10µA, I
F
=0
I
F
=0.5mA,
V
CE
=5V
I
F
=10mA,
I
C
=1mA
DC500V 40 to 60%RH
V=0, f=1MHz
V
CE
=2V,
I
C
=2mA,
R
L
=100Ω
MIN.
−
−
−
−
70
6
0.5
−
5×10
10
−
−
−
10
TYP.
1.2
−
30
−
−
−
−
−
1×10
11
0.6
4
3
−
MAX.
1.4
10
250
100
−
−
3.0
0.2
−
1.0
18
18
−
Unit
V
µA
pF
nA
V
V
mA
V
Ω
pF
µs
µs
kV/µs
Transfer characteristics
Output
Input
Common mode rejection voltage
CMR
Ta=25°C, R
L
=470Ω,
V
CM
=1.5kV
(peak),
I
F
=0mA,
V
CC
=9V,
Vnp=100mV
*1 Refer to Fig.1.
Fig.1 Test Circuit for Common Mode Rejection Voltage
(dV/d
t
)
V
CM
R
L
V
np
V
CC
1)
V
cp
V
np
V
CM
V
CM :
High wave
V
O
pulse
(V
cp
Nearly
=
dV/d
t
×C
f
×R
L
)
R
L
=470Ω
1) V
cp
: Voltage which is generated by displacement current in floating
V
CC
=9V
capacitance between primary and secondary side.
Fig.2 Forward Current vs. Ambient
Temperature
Fig.3 Diode Power Dissipation vs. Ambient
Temperature
10
Diode power dissipation P (mW)
0
25
50
75
100
125
15
Forward current I
F
(mA)
10
5
5
0
−30
0
−30
0
25
50
75
100
125
Ambient temperature T
a
(°C)
Ambient temperature T
a
(°C)
PC8171
X
NSZ Series
Fig.4 Collector Power Dissipation vs.
Ambient Temperature
Collector power dissipation P
C
(mW)
Fig.5 Total Power Dissipation vs. Ambient
Temperature
Total power dissipation P
tot
(mW)
200
200
170
150
150
100
100
50
50
0
−30
0
25
50
75
100
125
0
−30
0
25
50
75
100
125
Ambient temperature T
a
(°C)
Ambient temperature T
a
(°C)
Fig.6 Peak Forward Current vs. Duty Ratio
2000
Peak forward current I
FM
(mA)
1000
500
Pulse width
<=100µs
T
a
=25°C
Fig.7 Forward Current vs. Forward Voltage
100
Forward current I
F
(mA)
10
T
a
=25°C
T
a
=100°C
1
T
a
=75°C
T
a
=50°C
T
a
=0°C
T
a
=−25°C
200
100
50
20
10
5
10
−3
2
5
10
−2
2
5
10
−1
0.1
2
5
1
0
0.5
1.0
1.5
2.0
Duty ratio
Forward voltage V
F
(V)
Fig.8 Current Transfer Ratio vs. Forward
Current
800
700
Current transfer ratio CTR (%)
600
500
400
300
200
100
0
0.1
V
CE
=5V
T
a
=25°C
Fig.9 Collector Current vs. Collector-emitter
Voltage
40
T
a
=25°C
P
C
(MAX.)
Collector current I
C
(mA)
30
I
F
=7mA
20
I
F
=5mA
I
F
=3mA
I
F
=2mA
10
I
F
=1mA
0
I
F
=0.5mA
1
Forward current I
F
(mA)
10
0
2
4
6
8
10
Collector-emitter voltage V
CE
(V)
PC8171
X
NSZ Series
Fig.10 Relative Current Transfer Ratio vs.
Ambient Temperature
150
V
CE
=5V
I
F
=0.5mA
100
Collector-emitter saturation voltage V
CE (sat)
(V)
Fig.11 Collector - emitter Saturation Voltage
vs. Ambient Temperature
0.16
0.14
0.12
0.10
0.08
0.06
0.04
0.02
0
−30 −20 −10
0 10 20 30 40 50 60 70 80 90 100
Ambient temperature T
a
(°C)
I
F
=10mA
I
C
=1mA
Relative current transfer ratio (%)
50
0
−30 −20 −10
0 10 20 30 40 50 60 70 80 90 100
Ambient temperature T
a
(°C)
Fig.12 Collector Dark Current vs. Ambient
Temperature
10
−5
10
−6
V
CE
=50V
Fig.13 Response Time vs. Load Resistance
1000
V
CE
=2V
I
C
=2mA
T
a
=25°C
100
Response time (µs)
t
f
t
d
Collector dark current I
CEO
(A)
10
−7
10
−8
−9
10
t
r
1
t
s
10
10
−10
10
−11
−30 −20 −10
0 10 20 30 40 50 60 70 80 90 100
Ambient temperature T
a
(°C)
0.1
0.1
1
Load resistance R
L
(kΩ)
10
Fig.14 Response Time vs. Load Resistance
(Saturation)
1000
V
CC
=5V
I
F
=16mA
T
a
=25°C
100
Response time (µs)
t
s
10
t
f
Fig.15 Test Circuit for Response Time
V
CC
R
D
Input
R
L
Output Input
Output
10%
90%
t
d
t
r
t
d
t
s
t
f
1
t
r
0.1
1
10
Load resistance R
L
(kΩ)
100
PC8171
X
NSZ Series
Fig.16 Voltage Gain vs Frequency
5
Collector-emitter saturation voltage V
CE (sat)
(V)
V
CE
=2V
I
C
=2mA
T
a
=25°C
Fig.17 Collector-emitter Saturation Voltage
vs. Forward Current
5
I
C
=7mA
4
I
C
=5mA
I
C
=3mA
I
C
=2mA
3
I
C
=1mA
I
C
=0.5mA
2
T
a
=25°C
0
Voltage gain A
V
(dB)
−5
−10
R
L
=10kΩ
1kΩ
100Ω
−15
−20
−25
0.1
1
0
0
2
4
6
8
10
Forward current I
F
(mA)
1
10
Frequency f (kHz)
100
1000
Fig.18 Reflow Soldering
Only one time soldering is recommended within the temperature
Qorvo is a company that has long been committed to providing innovative RF solutions to enable a better connected world. It combines product and leading technology advantages, system-level expertise a...
Continuing from the last review, the link is as follows:
https://en.eeworld.com/bbs/thread-1221177-1-1.html
These are skipped for new construction projects.
Prepare the serial port assistant:The inter...
The code I found on the Internet mainly realizes the keyboard scanning function of the electronic password lock. However, I am not well-educated and have only a superficial understanding of C language...
This proteus simulation was made by a netizen. It can generate square waves, sine waves, sawtooth waves and triangle waves, and the waveform can also be adjusted using buttons.
However, it may be a bi...