Ordering Information .................................................................................................................................................................... 2
User Programming Interface ..................................................................................................................................... 18
Start-up output frequency and signaling types ........................................................................................................... 18
Any-frequency function ............................................................................................................................................. 19
C/SPI Control Registers...................................................................................................................................................... 28
9 I
Register Address: 0x00. DCO Frequency Control Least Significant Word (LSW) .................................................... 28
Register Address: 0x01. OE Control, DCO Frequency Control Most Significant Word (MSW) ................................. 29
Register Address: 0x02. DCO PULL RANGE CONTROL ........................................................................................ 29
Register Address: 0x03. Frac-N PLL Feedback Divider Integer Value and Frac-N PLL Feedback Divider Fraction
Value MSW ............................................................................................................................................................... 30
Register Address: 0x05. Forward Divider, Driver Control ......................................................................................... 30
Register Address: 0x06. Driver Divider, Driver Control ............................................................................................. 31
2
C Operation ........................................................................................................................................................................ 32
10 I
I
2
C protocol ............................................................................................................................................................... 32
I
2
C Timing Specification ............................................................................................................................................ 35
I
2
C Device Address Modes ....................................................................................................................................... 36
Dimensions and Patterns ........................................................................................................................................................... 43
Additional Information ................................................................................................................................................................ 44
Revision History ......................................................................................................................................................................... 45
Rev 1.01
Page 3 of 45
www.sitime.com
SiT3521
1 to 340 MHz Elite Platform I2C/SPI Programmable Oscillator
1 Electrical Characteristics
All Min and Max limits in the Electrical Characteristics tables are specified over temperature and rated operating voltage with
standard output terminations shown in the termination diagrams. Typical values are at 25°C and nominal supply voltage.
Table 1. Electrical Characteristics – Common to LVPECL, LVDS and HCSL
Parameter
Output Frequency Range
Symbol
f
Min.
1
Typ.
–
–
–
–
–
±1
–
–
–
Max.
340
Unit
MHz
Condition
Factory or user programmable, accurate to 6 decimal places
Frequency Range
Frequency Stability
Frequency Stability
F_stab
-10
-20
-25
-50
First Year Aging
F_1y
–
+10
+20
+25
+50
–
ppm
ppm
ppm
ppm
ppm
°C
°C
°C
1
st
-year aging at 25°C
Inclusive of initial tolerance, operating temperature, rated
power supply voltage and load variations.
Temperature Range
Operating Temperature Range
T_use
-20
-40
-40
+70
+85
+105
Supply Voltage
Supply Voltage
Vdd
2.97
2.7
2.52
2.25
3.3
3.0
2.8
2.5
–
–
100
–
–
–
3.63
3.3
3.08
2.75
–
30%
–
V
V
V
V
Extended Commercial
Industrial
Extended Industrial. Available only for I
2
C operation, not SPI.
Input Characteristics – OE Pin
Input Voltage High
Input Voltage Low
Input Pull-up Impedance
VIH
VIL
Z_in
70%
–
–
Vdd
Vdd
kΩ
OE pin
OE pin
OE pin, logic high or logic low
Output Characteristics
Duty Cycle
DC
45
–
–
55
%
Startup and Output Enable/Disable Timing
Start-up Time
Output Enable/Disable Time –
Hardware control via OE pin
Output Enable/Disable Time –
Software control via I
2
C/SPI
T_start
T_oe_hw
3.0
3.8
ms
µs
Measured from the time Vdd reaches its rated minimum value
Measured from the time OE pin reaches rated VIH and VIL to
the time clock pins reach 90% of swing and high-Z.
See
Figure 9
and
Figure 10
Measured from the time the last byte of command is
transmitted via I
2
C/SPI (reg1) to the time clock pins reach 90%
of swing and high-Z. See
Figure 30
and
Figure 31
T_oe_sw
–
–
6.5
µs
Rev 1.01
Page 4 of 45
www.sitime.com
SiT3521
1 to 340 MHz Elite Platform I2C/SPI Programmable Oscillator
Table 2. Electrical Characteristics – LVPECL Specific
Parameter
Symbol
Min.
Typ.
Max.
Unit
Condition
Current Consumption
Current Consumption
OE Disable Supply Current
Output Disable Leakage Current
Maximum Output Current
Idd
I_OE
I_leak
I_driver
–
–
–
–
–
–
0.15
–
89
58
–
32
mA
mA
A
mA
Excluding Load Termination Current, Vdd = 3.3 V or 2.5 V
OE = Low
OE = Low
Maximum average current drawn from OUT+ or OUT-
Output Characteristics
Output High Voltage
Output Low Voltage
Output Differential Voltage Swing
Rise/Fall Time
VOH
VOL
V_Swing
Tr, Tf
Vdd - 1.1V
Vdd - 1.9V
1.2
–
–
–
1.6
225
Vdd - 0.7V
Vdd - 1.5V
2.0
290
Jitter
RMS Phase Jitter (random) –
DCO Mode Only
T_phj
–
–
RMS Phase Jitter (random) –
Any-frequency Mode Only
T_phj
–
–
RMS Period Jitter
[3]
Note:
3. Measured according to JESD65B.
T_jitt
–
0.225
0.1
0.225
0.11
1
0.340
0.14
0.340
0.15
1.6
ps
ps
ps
ps
ps
f = 156.25 MHz, Integration bandwidth = 12 kHz to 20 MHz,
all Vdd levels
f = 156.25, IEEE802.3-2005 10 GbE jitter mask integration
bandwidth = 1.875 MHz to 20 MHz, all Vdd levels
f = 156.25 MHz, Integration bandwidth = 12 kHz to 20 MHz,
all Vdd levels
f = 156.25, IEEE802.3-2005 10 GbE jitter mask integration
bandwidth = 1.875 MHz to 20 MHz, all Vdd levels
f = 100, 156.25 or 212.5 MHz, Vdd = 3.3 V or 2.5 V
V
V
V
ps
See
Figure 5
See
Figure 5
See
Figure 6
20% to 80%, see
Figure 6
Table 3. Electrical Characteristics – LVDS Specific
Parameter
Symbol
Min.
Typ.
Max.
Unit
Condition
Current Consumption
Current Consumption
OE Disable Supply Current
Output Disable Leakage Current
Idd
I_OE
I_leak
–
–
–
–
–
0.15
80
61
–
mA
mA
A
Excluding Load Termination Current, Vdd = 3.3 V or 2.5 V
OE = Low
OE = Low
Output Characteristics
Differential Output Voltage
Delta VOD
Offset Voltage
Delta VOS
Rise/Fall Time
VOD
ΔVOD
VOS
ΔVOS
Tr, Tf
250
–
1.125
–
–
–
–
–
–
400
455
50
1.375
50
470
Jitter
RMS Phase Jitter (random) –
DCO Mode Only
T_phj
–
–
RMS Phase Jitter (random) –
Any-frequency Mode Only
T_phj
–
–
RMS Period Jitter
[4]
Note:
4. Measured according to JESD65B.
T_jitt
–
0.21
0.1
0.21
0.1
1
0.275
0.12
0.367
0.12
1.6
ps
ps
ps
ps
ps
f = 156.25 MHz, Integration bandwidth = 12 kHz to 20 MHz,
all Vdd levels
f = 156.25, IEEE802.3-2005 10 GbE jitter mask integration
bandwidth = 1.875 MHz to 20 MHz, all Vdd levels
f = 156.25 MHz, Integration bandwidth = 12 kHz to 20 MHz,
all Vdd levels
f = 156.25, IEEE802.3-2005 10 GbE jitter mask integration
bandwidth = 1.875 MHz to 20 MHz, all Vdd levels
f = 100, 156.25 or 212.5 MHz, Vdd = 3.3 V or 2.5 V
mV
mV
V
mV
ps
f = 156.25MHz See
Figure 7
See
Figure 7
See
Figure 7
See
Figure 7
Measured with 2 pF capacitive loading to GND, 20% to 80%,
Imagine how a photo can be clear? Of course, the more pixels there are, the closer the original information contained in the photo is to reality, and the clearer it looks.The waveform we see on an osc...
In the repair of mobile phones, circuit identification is a difficult point for beginners, especially many beginners are often helpless when facing one principle working diagram after another, and don...
In what fields are panoramic HD video recorders used? Panoramic HD video recorders support recording videos and matching audio from at least4HD cameras into one video file, and displaying them on the ...
[i=s]This post was last edited by qwqwqw2088 on 2018-8-22 15:35[/i] [size=4]G4210 "GB/T4210-2001 Electrical Terminology: Electromechanical Components for Electronic Equipment" [/size] [size=4] [/size]...
[align=center][color=rgb(18, 119, 221)][font=Fangzheng Lanting bold black, Microsoft elegant black][url=https://en.eeworld.com/bbs/thread-926795-1-1.html]I am a great detective: looking for the lost T...
In China, the production volume of industrial products is increasing every year. Therefore, users have higher and higher requirements for product quality. Here we are not only talking about performanc...
Today, Huawei's first 5G dual-mode mobile phone, the Mate 20 X 5G version, was officially launched. Taking this opportunity, Huawei began to popularize whether to change the phone or the card to use ...[Details]
Recently, the Power Plant Group has won two bids in the field of compressed air energy storage, including a 300MW compressed air energy storage turbine power generation equipment order from China E...[Details]
Power supply is an indispensable component of various electronic devices. The quality of its performance is directly related to the technical indicators of the electronic equipment, whether it can ...[Details]
Crystalline silicon solar cell conversion efficiency
1. Conversion efficiency loss mechanism of silicon solar cells
The conversion efficiency of solar cells is limited by light absorption, ...[Details]
I still remember when I joined Shangao China in January, I frequently heard the prediction that "2019 will be the most difficult year", and I was skeptical. After all, for a striver, every step is no...[Details]
The SPI (Serial Peripheral Interface) bus system is a synchronous serial peripheral interface that enables the MCU to communicate with various peripheral devices in a serial manner to exchange inform...[Details]
With the popularity of thin and light notebooks and tablets, the "travel weight" of business people on each business trip has been greatly reduced, but devices such as laptops or tablets are still in...[Details]
June 2, 2022, Shanghai, China - Corechip, a leading company in the domestic EDA and IPD industries, announced at the 2022 IMS exhibition being held in Denver, USA that its cumulative IPD chip shipmen...[Details]
The stack pointer is mainly used to store temporary data, local variables and the return address of interrupts/subroutines. The stack pointer always points to the top of the stack. Note that the AVR ...[Details]
Digital/binary sensors and switches are essential for signal monitoring and system control and are widely used in industrial control, industrial automation, motor control, and process automation. The...[Details]
China Energy Storage Network:
In order to implement the spirit of the Central Economic Work Conference, actively fulfill the political, economic and social responsibilities of central enterpr...[Details]
In recent years, technologies such as cloud computing, cloud storage, and big data have developed rapidly in the Internet industry. The technologies and products have been well tested in the marke...[Details]
1. What is FFT on an oscilloscope? 2. What problems can the oscilloscope's FFT solve? 3. The FFT of an oscilloscope often becomes a useless tool in the hands of users. What is the problem? 4. How do ...[Details]
MiR Fleet Enterprise is more than just a simple upgrade; it also brings modules that keep pace with customer needs and technological developments, as well as other advanced features.
Sha...[Details]