• Multilayer Chips Ceramic Capacitors for operating
temperature up to 250°C
• NPO and X7R dielectrics
• Capacitance range: 10pF to 3.3µF
• Voltage range at 20°C: 25 V
DC
to 500 V
DC
Dissipation factor at 200°C
≤1.5% at 1MHz for C ≤ 100pF
≤1.5% at 1kHz for C > 100pF
Dissipation factor at 220°C
≤0.5% at 1MHz for C ≤ 100pF
≤0.5% at 1kHz for C > 100pF
PHYSICAL CHARACTERISTICS
CONSTRUCTION
Selfprotected radial or axial leaded chips capacitors for
through-hole circuits. Mechanical stress is eliminated by
replacement of epoxy by selfprotected ceramic.
MARKING
(clear or coded)
Series, capacitance value, tolerance, voltage, date code.
Dissipation factor at 250°C
≤0.5% at 1MHz for C ≤ 100pF
≤0.5% at 1kHz for C > 100pF
≥ 100,000MΩ or ≥ 1,000MΩ.µF
(whichever is less)
≥ 1,000MΩ or ≥ 10MΩ.µF
(whichever is less)
≥ 200MΩ or ≥ 4MΩ.µF
(whichever is less)
≥ 100MΩ or ≥ 2MΩ.µF
(whichever is less)
≤ 2.5% per decade hour
Insulation resistance at 20°C
under U
RC
Insulation resistance at 200°C
under U
RC
Insulation resistance at 220°C
under U
RC
Insulation resistance at 250°C
under U
RC
Ageing
HOW TO ORDER
TCN2
TCN2X
TCN5X
Series
64
64
64
Exxelia size code
2
Leads spacing code
W
RoHS compliant
180pF
Capacitance
10%
Tolerance
100 V
Rated voltage at20°C
Operating temperature
Up to 200°C
TCE2
= NPO
TCN2
= X7R
Up to 220°C
TCE2X
= NPO
TCN2X
= X7R
Up to 250°C
TCE5X
= NPO
TCN5X
= X7R
12
13
14
15
16
62
63
64
65
66
Available on sizes 62, 63,
-
= No RoHS
64, 65, 66:
-
Available on sizes 62, 63,
2
64, 65, 66:
3
W =
RoHS compliant
Lead free version available
for operating temperature
up to 175°C (contact your
sales representative)
Capacitance value
in clear
NPO:
cap. value ≤ 12pF
±0.25pF
cap. value ≤ 8.2pF
±0.5pF
±1pF
cap. value > 22pF
±1%
cap. value > 12pF
±2%
cap. value > 8.2pF
±5%
±10%
cap. value > 3.9pF
±20%
X7R:
±10%
±20%
25 V
50 V
100 V
500 V
www.exxelia.com
115
info@exxelia.com
Page revised 02/21
HIGH TEMPERATURE
CERAMIC CAPACITORS
TCE / TCN Self-Protected Series
Taping : dimensions
DIMENSIONS in inches (mm)
L
≥ 0.472
(≥ 12)
High Temperature Self-Protected Capacitors
L
T
W
W
≥ 0.472
(≥ 12)
Ø
X
14
-
0.315 ± 0.012
(8 ± 0.3)
0.315 ± 0.012
(8 ± 0.3)
0.15
(3.8)
0.2 ± 0.008
(5.08 ± 0.2)
0.031
(0.8)
NPO
X7R
270pF
15nF
15
-
0.559 ± 0.012
(14.2 ± 0.3)
0.417 ± 0.012
(10.6 ± 0.3)
0.099
(2.5)
0.4 ± 0.008
(10.16 ± 0.2)
0.039
(1)
NPO
X7R
680pF
22nF
16
-
0.559 ± 0.012
(14.2 ± 0.3)
0.417 ± 0.012
(10.6 ± 0.3)
0.15
(3.8)
0.4 ± 0.008
(10.16 ± 0.2)
0.039
(1)
NPO
X7R
680pF
39nF
-
Ø
X
STANDARD RATINGS
Exxelia size code
Leads spacing code
L
Dimensions
inches (mm)
W
T max.
X
Ø ± 10%
Dielectric
Min. Capacitance value
20°C 200°C 220°C 250°C
Rated voltage (U
RC
)
25V
50V
100V
12V
25V
50V
8V
16V
25V
125V
5V
10V
16V
63V
-
6.8nF
3.9nF
-
-
390nF
180nF
-
-
12nF
6.8nF
-
-
680nF
330nF
-
-
22nF
15nF
-
-
1.2µF
680nF
-
-
33nF
22nF
-
12
-
0.284 ± 0.012
(7.2 ± 0.3)
0.244 ± 0.012
(6.2 ± 0.3)
0.099
(2.5)
0.2 ± 0.008
(5.08 ± 0.2)
0.024
(0.6)
NPO
X7R
10pF
3.3nF
13
-
0.315 ± 0.012
(8 ± 0.3)
0.315 ± 0.012
(8 ± 0.3)
0.099
(2.5)
0.2 ± 0.008
(5.08 ± 0.2)
0.024
(0.6)
NPO
X7R
270pF
6.8nF
T
63
2
0.267 max
(6.85 max)
0.1 max
(2.54 max)
0.1
(2.54)
0.5 ± 0.02 0.6 ± 0.02
(12.7 ± 0.5) (15.24 ± 0.5)
0.024
(0.6)
NPO
X7R
1pF
100pF
-
1.8µF
1µF
-
-
56nF
39nF
-
-
3.9µF
1.8µF
-
8.2nF
4.7nF
3.3nF
330pF
180nF
120nF
47nF
-
500V 250V
Exxelia size code
Leads spacing code
L
Dimensions
inches (mm)
W
T max.
X
Ø ± 10%
Dielectric
Min. Capacitance value
Rated voltage (U
RC
)
20°C 200°C 220°C 250°C
25V
50V
100V
12V
25V
50V
8V
16V
25V
5V
10V
16V
27nF
15nF
10nF
NPO
100pF
0.6 ± 0.02
(15.24 ± 0.5)
-
64
2
0.4 max
(10.16 max)
0.15 max
(3.8 max)
0.15
(3.8)
0.7 ± 0.02
(17.78 ± 0.5)
0.024
(0.6)
3
65
-
0.517
(13.2 max)
0.264 max
(6.7 max)
0.158
(4)
0.7 ± 0.02
(17.78 ± 0.5)
0.024
(0.6)
NPO
390pF
X7R
390pF
-
66
2
0.717
(18.2 max)
0.37 max
(9.4 max)
0.158
(4)
0.95 ± 0.02
(24.13 ± 0.5)
0.024
(0.6)
3
1 ± 0.02
(25.4 ± 0.5)
0.9 ± 0.02
(22.86 ± 0.5)
1 ± 0.02
(25.4 ± 0.5)
X7R
180pF
NPO
820pF
X7R
820pF
560nF
330nF
120nF
68nF
39nF
22nF
1.8µF
1µF
330nF
150nF
100nF
56nF
3.3µF
1.8µF
820nF
Available capacitance values:
NPO: E6, E12, E24 (see page 14). Specific values upon request.
X7R: E6, E12 (see page 14). Specific values upon request.
Exxelia can delivery axial leads on size code 262, 263, 264, 265, 266 to allow the customer to obtain the leads spacing needed (leads spacing code = 9). In that case we recommend to bend the connections at a
distance from the ceramic body of 5mm minimum.
The above table defines the standard products, other components may be built upon request.
www.exxelia.com
116
info@exxelia.com
Page revised 02/21
CERAMIC CAPACITORS
General Information
Taping : dimensions
High temperature capacitors are made of class 1 or class 2 ceramic dielectrics
featuring special compositions based upon high purity oxides to reduce ionic
conduction inherent to the presence of atoms such as sodium.
In addition, all quality controls carried out at intermediate and final production
stages (lot acceptance test under U
RC
and insulation resistance measurement
at operating temperature) are the assurance of enhanced reliability.
High temperature capacitors include :
• chip class 1 (CEC 203 to CEC 233) and class 2 (CNC 203 to 233),
• encapsulated radial leads class 1 and 2 (TCE / TCN 201 to 204),
• encapsulated axial leads class 1 and 2 (TCE / TCN 252 to 254),
• selfprotected radial leads class 1 and 2 (TCE / TCN 212 to 216)
and radial leads class 1 and 2 (TCE / TCN 263).
Mechanical stress is eliminated with replacement of epoxy by selfprotected
ceramic. This also allows the increase of the capacitance ranges and improves
the reliability.
• high voltage varnished capacitors (TCH 279 to 285)
• high capacitance value SCT Series.
They are highly recommended for operation at temperatures of up to 200°C.
Capacitors specifically designed for higher operating temperatures (e.g. TCE /
TCN 212 to 216 and TCE / TCN 263 to 266) are also available.
High temperature capacitors are made of class 1 or class 2 ceramic dielectrics
featuring special compositions based upon high purity oxides to reduce ionic
conduction inherent to the presence of atoms such as sodium.
TYPICAL CURVES: CE / CN Series, TCE / TCN Series, TCH Series
NPO: TYPICAL CAPACITANCE VARIATION VERSUS TEMPERATURE
∆C/C (%)
0.8
0.6
100000
1000000
NPO: TYPICAL INSULATION RESISTANCE VERSUS TEMPERATURE
Insulation
resistance (M .µF)
0.4
0.2
10000
0
–0.2
–0.4
1000
100
–0.6
–0.8
–50
–20
10
40
70
100
Typical
130
Limit
160
190
220
250
1
25
50
75
100
125
150
175
200
225
250
10
Temperature (°C)
Temperature (°C)
X7R: TYPICAL CAPACITANCE VARIATION VERSUS TEMPERATURE
∆C/C (%)
X7R: TYPICAL INSULATION RESISTANCE VERSUS TEMPERATURE
Insulation
resistance (M .µF)
10000
5
–5
–15
1000
–25
100
–35
–45
10
–55
–65
–50
–20
10
40
70
100
130
160
190
220
250
1
25
50
75
100
125
150
175
200
225
250
Temperature coefficient without voltage
Temperature coefficient at full rated voltage
Temperature (°C)
Temperature (°C)
www.exxelia.com
104
info@exxelia.com
Page revised 02/21
CERAMIC CAPACITORS
General characteristics
General Information
TYPICAL CURVES: SCT Series
ΔC/C VERSUS APPLIED VOLTAGE AND RATED VOLTAGE (U
R
)
∆C/C (%)
CAPACITANCE VERSUS TEMPERATURE
∆C/C (%)
10
0
–10
–20
–30
–40
–50
–60
20
10
0
–10
–20
–30
–40
–50
–60
–70
–80
–90
0
50
100
150
200
U
R
= 100V
250
U
R
= 200V
300
U
R
= 500V
350
400
450
500
–70
–60
–40
–20
0
20
40
60
80
100
120
140
160
180
200
Voltage (V)
Temperature (°C)
DIELECTRIC LOSSES VERSUS TEMPERATURE
DF (%)
3,5
3
2.5
2
1.5
1
0.5
0
–0.5
–60
–40
–20
0
20
40
60
80
100
120
140
160
180
200
INSULATION RESISTANCE VERSUS TEMPERATURE
RI ( .F)
100000
10000
1000
100
10
–60
–40
–20
0
20
40
60
80
100
120
140
160
180
200
Temperature (°C)
Temperature (°C)
www.exxelia.com
105
info@exxelia.com
Page revised 02/21
HIGH TEMPERATURE
CERAMIC CAPACITORS
Ceramic Capacitors
Taping : dimensions Technology
MLCC STRUCTURE
Terminations
Ceramic
DIELECTRIC CHARACTERISTICS
Insulation Resistance (IR)
is the resistance measured under DC voltage
across the terminals of the capacitor and consists principally of the parallel
resistance shown in the equivalent circuit. As capacitance values and hence
the area of dielectric increases, the IR decreases and hence the product (C x
IR) is often specified in Ω.F or MΩ.µF.
The Equivalent Series Resistance (ESR)
is the sum of the resistive terms
which generate heating when capacitor is used under AC voltage at a given
frequency (f).
Tin
Tin / Lead
Gold
(Solderable layer)
Electrodes
Margins
Silver or Silver / Palladium (electrodes contact layer)
Polymer (crack protection layer)
Nickel or Copper barrier (leaching protection layer)
Dissipation factor (DF)
is the ration of the apparent power input will turn to
heat in the capacitor:
DF = 2π f C ESR
When a capacitor works under AC voltage,
heat power loss (P),
expressed in
Watt, is equal to:
P = 2π f C Vrms
2
DF
EQUIVALENT CIRCUIT
Capacitor is a complex component combining resistive, inductive and capaci-
tive phenomena. A simplified schematic for the equivalent circuit is:
The series inductance (Ls)
is due to the currents running through the elec-
trodes. It can distort the operation of the capacitor at high frequency where the
impedance (Z)
is given as:
Z = Rs + j (Ls.q - 1⁄(C.q)) with
q
= 2πf
IR
Ls
Rs
C
When frequency rises, the capacitive component of capacitors is gradually
canceled up to the resonance frequency, where :
Z = Rs and LsC.q
2
= 1
Above this frequency the capacitor behaves like an inductor.
Traditional C6000 DSP software is compiled and debugged on a WINDOWS PC through CCS. After testing, the compiled executable file is burned into FLASH. By setting the DSP startup mode to start from FLA...
[i=s] This post was last edited by qwqwqw2088 on 2019-2-11 14:23 Edit[/i] [size=4][color=#000000][backcolor=white] The development of new energy and electric vehicles will use lithium batteries with r...
[i=s]This post was last edited by dcexpert on 2019-10-17 10:55[/i]In SAMR21, part of the flash space can be used to simulate EEPROM, which is called NVM (Non-Volatile Memory). Using EEPROM is simpler ...
On the ATmega4809 Curiosity Nano, the button uses PF6, which is also the RST pin and is set to GPIO mode by default. Because there is a 100K pull-up resistor R200 on PF6, there is no need to set the i...
[align=left][b][font=微软雅黑][size=3]No way to get support in the middle of the night, time-consuming to return software to the factory for upgrading, too low efficiency of customer service communication...
[size=4]1. The so-called rail-to-rail operational amplifier refers to an amplifier whose input and output voltage swings are very close to or almost equal to the power supply voltage. [/size] [size=4]...
New soft robot. Image credit: North Carolina State University
Researchers at North Carolina State University in the United States have designed a new soft robot. It can perform three b...[Details]
According to foreign media reports, Panasonic Automotive has launched its latest fully connected electronic cockpit concept, integrating Panasonic's proprietary SkipGen 3.0 in-vehicle infotainment (I...[Details]
According to a July 2019 Consumer Watchdog report, by 2022, more than two-thirds of new cars in the United States will have safety-critical systems connected online, exposing vehicle infotainment, GP...[Details]
Recently, two companies have released a new solid-state battery , let us take a look. Ganfeng Lithium Battery releases super semi-solid "Xinfeng" battery According to the official account of Ga...[Details]
In order to achieve the accuracy of the measurement data, in addition to choosing the right instrument, the choice of test and measurement methods should not be underestimated. The power unit o...[Details]
The Industrial Internet Industry Alliance of the Ministry of Industry and Information Technology recently announced the latest "Time Sensitive Network (TSN) Industry Chain Directory Plan", among whic...[Details]
On the morning of June 8, Apple recently obtained a new patent that allows users to take photos and group photos remotely. The content of this patent is not difficult to understand. It allow...[Details]
Bob Widlar is a well-known analog IC design rebel. Engineering Halls of Fame often remember historical figures such as Michael Faraday, Gustav Kirchhoff, and James Clerk Maxwell. But among those na...[Details]
Recently, Shuanghuan Transmission released its performance forecast for the first three quarters of 2022, which showed that from January to September, the net profit attributable to shareholders of...[Details]
1. Introduction
The lithium battery monitoring system implemented in this paper consists of DS2762 lithium battery monitoring chip, 51 single-chip microcomputer, and LCD display module. The cor...[Details]
1 Introduction
LED (light emitting diode) display screen is composed of light emitting diode array. Light emitting diode (LED) is a current control device with the advantages of high brightnes...[Details]
Phase noise No oscillator is absolutely stable. Although we cannot see the actual frequency jitter of the spectrum analyzer's local oscillator system, we can still observe obvious manifestations of l...[Details]
It has been tested, directly on the program, don't understand @me #include"reg52.h" #include"string.h" #define uchar unsigned char #define uint unsigned int //The following is the configuration of th...[Details]
In 2012, Apple officially released the iPad mini series. Compared to the iPhone at that time, the 7.9-inch iPad mini was considered a giant screen. At the beginning of its launch, the iPad mini quick...[Details]
Android supports three types of processors (CPUs): ARM, Intel, and MIPS. ARM is undoubtedly the most widely used. Intel is well known for its popularity in desktops and servers, but has relatively ...[Details]