Ordering Information .................................................................................................................................................................... 2
7.1. User Programming Interface ..................................................................................................................................... 19
7.2. Start-up output frequency and signaling types .......................................................................................................... 19
8.1. Any-frequency function ............................................................................................................................................. 20
9 I C/SPI Control Registers...................................................................................................................................................... 30
9.1. Register Address: 0x00. DCO Frequency Control Least Significant Word (LSW) .................................................... 30
9.2. Register Address: 0x01. OE Control, DCO Frequency Control Most Significant Word (MSW) ................................. 31
9.3. Register Address: 0x02. DCO PULL RANGE CONTROL ........................................................................................ 32
9.4. Register Address: 0x03. Flac-N PLL Integer Value and Flac-N PLL Fraction MSW ................................................. 33
9.6. Register Address: 0x05. PostDiv, Driver Control ...................................................................................................... 34
9.7. Register Address: 0x06. mDriver, Driver Control ...................................................................................................... 35
2
10 I C Operation ........................................................................................................................................................................ 36
2
10.1. I C protocol ............................................................................................................................................................... 36
2
10.2. I C Timing Specification ............................................................................................................................................ 38
2
10.3. I C Device Address Modes ....................................................................................................................................... 39
Dimensions and Patterns ........................................................................................................................................................... 46
Additional Information ................................................................................................................................................................ 47
Revision History ......................................................................................................................................................................... 48
Rev 0.91
Page 3 of 48
www.sitime.com
SiT3522
340 to 725 MHz Elite™ I
2
C/SPI Programmable Oscillator
1 Electrical Characteristics
PRELIMINARY
All Min and Max limits in the Electrical Characteristics tables are specified over temperature and rated operating voltage with
standard output terminations shown in the termination diagrams. Typical values are at 25°C and nominal supply voltage.
Table 1. Electrical Characteristics – Common to LVPECL, LVDS and HCSL
Parameter
Output Frequency Range
Symbol
f
Min.
340.000001
340.000001
Typ.
–
–
Max.
725.000000
500.000000
Unit
MHz
MHz
Condition
LVDS and LVPECL output driver, factory or user
programmable, accurate to 6 decimal places
HCSL output driver, factory or user programmable, accurate to
6 decimal places
Inclusive of initial tolerance, operating temperature, rated
power supply voltage and load variations
Frequency Range
Frequency Stability
Frequency Stability
F_stab
-20
-20
-25
-50
First Year Aging
Operating Temperature Range
F_1y
T_use
–
-20
-40
-40
Supply Voltage
Vdd
2.97
2.7
2.52
2.25
Input Voltage High
Input Voltage Low
Input Pull-up Impedance
Duty Cycle
Start-up Time
Output Enable/Disable Time –
Hardware control via OE pin
Output Enable/Disable Time –
Software control via I
2
C/SPI
VIH
VIL
Z_in
DC
T_start
T_oe_hw
70%
–
–
45
–
–
–
–
–
–
±1
–
–
–
3.3
3.0
2.8
2.5
–
–
100
–
–
–
+20
+20
+25
+50
–
+70
+85
+105
Supply Voltage
3.63
3.3
3.08
2.75
–
30%
–
55
3.0
9.1
V
V
V
V
Vdd
Vdd
kΩ
%
ms
µs
Measured from the time Vdd reaches its rated minimum value
Measured from the time OE pin reaches rated VIH and VIL to
the time clock pins reach 90% of swing and high-Z.
See
Figure 9
and
Figure 10
Measured from the time the last byte of command is
transmitted via I
2
C/SPI (reg1) to the time clock pins reach 90%
of swing and high-Z. See
Figure 30
and
Figure 31
OE pin
OE pin
OE pin, logic high or logic low
ppm
ppm
ppm
ppm
ppm
°C
°C
°C
1 -year aging at 25°C
Extended Commercial
Industrial
Extended Industrial. Available only for I C operation, not SPI.
2
st
Temperature Range
Input Characteristics – OE Pin
Output Characteristics
Startup and Output Enable/Disable Timing
T_oe_sw
–
–
11.8
µs
Rev 0.91
Page 4 of 48
www.sitime.com
SiT3522
340 to 725 MHz Elite™ I
2
C/SPI Programmable Oscillator
Table 2. Electrical Characteristics – LVPECL Specific
Parameter
Symbol
Min.
Typ.
Max.
Unit
PRELIMINARY
Condition
Current Consumption
Current Consumption
OE Disable Supply Current
Output Disable Leakage Current
Maximum Output Current
Idd
I_OE
I_leak
I_driver
–
–
–
–
–
–
0.10
–
94
63
–
30
mA
mA
A
mA
Excluding Load Termination Current, Vdd = 3.3V or 2.5V
OE = Low
OE = Low
Maximum average current drawn from OUT+ or OUT-
Output Characteristics
Output High Voltage
Output Low Voltage
Output Differential Voltage Swing
Rise/Fall Time
VOH
VOL
V_Swing
Tr, Tf
Vdd - 1.1V
Vdd - 1.9V
1.2
–
–
–
1.6
225
Vdd - 0.7V
Vdd - 1.5V
2.0
290
Jitter
RMS Phase Jitter (random) –
DCO Mode Only
T_phj
–
–
RMS Phase Jitter (random) –
Any-frequency Mode Only
T_phj
–
–
RMS Period Jitter
[3]
Note:
3. Measured according to JESD65B
T_jitt
–
0.22
0.075
0.23
0.09
1
0.260
0.085
0.325
0.095
1.6
ps
ps
ps
ps
ps
f = 622.08 MHz, Integration bandwidth = 12 kHz to 20 MHz,
all Vdd levels
f = 622.08, IEEE802.3-2005 10 GbE jitter mask integration
bandwidth = 1.875 MHz to 20 MHz, all Vdd levels
f = 622.08 MHz, Integration bandwidth = 12 kHz to 20 MHz,
all Vdd levels
f = 622.08, IEEE802.3-2005 10 GbE jitter mask integration
bandwidth = 1.875 MHz to 20 MHz, all Vdd levels
f = 622.08 MHz, Vdd = 3.3V or 2.5V
V
V
V
ps
See
Figure 5
See
Figure 5
See
Figure 6
20% to 80%, see
Figure 6
Table 3. Electrical Characteristics – LVDS Specific
Parameter
Symbol
Min.
Typ.
Max.
Unit
Condition
Current Consumption
Current Consumption
OE Disable Supply Current
Output Disable Leakage Current
Idd
I_OE
I_leak
–
–
–
–
–
0.15
89
67
–
mA
mA
A
Excluding Load Termination Current, Vdd = 3.3V or 2.5V
OE = Low
OE = Low
Output Characteristics
Differential Output Voltage
Delta VOD
Offset Voltage
Delta VOS
Rise/Fall Time
VOD
ΔVOD
VOS
ΔVOS
Tr, Tf
250
–
1.125
–
–
–
–
–
–
340
530
50
1.375
50
460
Jitter
RMS Phase Jitter (random) –
DCO Mode Only
T_phj
–
–
RMS Phase Jitter (random) –
Any-frequency Mode Only
T_phj
–
–
RMS Period Jitter
[4]
Note:
4. Measured according to JESD65B.
T_jitt
–
0.21
0.060
0.21
0.070
1
0.255
0.070
0.320
0.80
1.6
ps
ps
ps
ps
ps
f = 622.08 MHz, Integration bandwidth = 12 kHz to 20 MHz,
all Vdd levels
f = 622.08 MHz, IEEE802.3-2005 10 GbE jitter mask
integration bandwidth = 1.875 MHz to 20 MHz, all Vdd levels
f = 622.08 MHz, Integration bandwidth = 12 kHz to 20 MHz,
all Vdd levels
f = 622.08 MHz, IEEE802.3-2005 10 GbE jitter mask
integration bandwidth = 1.875 MHz to 20 MHz, all Vdd levels
f = 622.08 MHz, Vdd = 3.3V or 2.5V
mV
mV
V
mV
ps
f = 622.08 MHz. See
Figure 7
See
Figure 7
See
Figure 7
See
Figure 7
Measured with 2 pF capacitive loading to GND, 20% to 80%,
He has been engaged in DSP development for several years. Seeing that many friends are very interested in DSP development, he writes about his experience in DSP development in recent years. This is ju...
[i=s]This post was last edited by damiaa on 2021-5-14 16:47[/i]basic concept
Kirchhoff's Laws (1)
1. Branch: (1) Each component is a branch. (2) Components connected in series are considered a branch....
What do you need to do to port an already written algorithm to your DSP development board and make it run well?
I will talk about it in two parts. The first part is transplantation, and the second par...
Looking back at 2021, what interesting and useful content did you find in EEWorld? Share them by replying to the post. They can be download center (download.eeworld.com.cn) materials, forum (bbs.eewor...
For battery charging and power supply: Rutronik offers ultra-compact single-chip PMIC solutions from Nordic Semiconductor
High efficiency and reliability where size matters: Nordic n...[Details]
1 Introduction
Switching power supplies dominate the power supply field with their high efficiency and high power density. However, traditional switching power supplies have a fatal weakness: l...[Details]
1. Flame detection alarm
Figure 8-23 is a flame detector circuit diagram using lead sulfide photoresistor as detection element. The dark resistance of lead sulfide photoresistor is ...[Details]
The innovative Current Controlled Frequency Flyback (CCFF) technique enables analog power factor correction (PFC) controllers to deliver high efficiency over the full load range, with other known ben...[Details]
With the growing market demand for high-precision micro-terminal products, the stamping process has attracted increasing attention from connector manufacturers. Among the four core processes of man...[Details]
1.1 Overview
A proportional-integral-differential controller (PID controller or three-term controller) is a control loop mechanism that uses feedback and is widely used in industrial control s...[Details]
Remote patient monitors running low on power? Recommended power supply design elements
The Internet of Things (IoT) revolution has brought about a paradigm shift in the way medical ins...[Details]
introduction
As a landmark technology of smart home, remote control is widely used in various smart home systems. This paper designs and implements a remote air conditioning control solution in smart...[Details]
Yesterday, Apple's 2019 flagships were officially unveiled. None of the three phones, iPhone 11, iPhone 11 Pro, and iPhone 11 Pro Max, support 5G, have quad cameras, or have TSMC's EUV. We've analyze...[Details]
I was recently in charge of a project that used a high-performance chip called stm32f4. During the development process, I encountered a very strange phenomenon. I spent two or three days to figure it...[Details]
Deso
Precision Industry
points out that
there are several ways to fix the M16, depending on the type and purpose of the connector. The following are several common ways to fix the in...[Details]
Electric vehicles and light electric motorcycles are becoming more and more popular due to their low energy consumption, green and environmental protection, and have become a major direction for fu...[Details]
As the LED market matures, LED lighting has become the main pillar industry of the lighting market, and more and more people are paying attention to LED driving technology. Many practitioners in the ...[Details]
First look at the address line of 2440: mini2440 schematic.pdf
The 2440 chip provides 27 address lines = 128M.
The S3c2440 chip only provides 27 address lines addr on the pins provi...[Details]