Ordering Information .................................................................................................................................................................... 2
7.1. User Programming Interface ..................................................................................................................................... 19
7.2. Start-up output frequency and signaling types .......................................................................................................... 19
8.1. Any-frequency function ............................................................................................................................................. 20
9 I C/SPI Control Registers...................................................................................................................................................... 30
9.1. Register Address: 0x00. DCO Frequency Control Least Significant Word (LSW) .................................................... 30
9.2. Register Address: 0x01. OE Control, DCO Frequency Control Most Significant Word (MSW) ................................. 31
9.3. Register Address: 0x02. DCO PULL RANGE CONTROL ........................................................................................ 32
9.4. Register Address: 0x03. Flac-N PLL Integer Value and Flac-N PLL Fraction MSW ................................................. 33
9.6. Register Address: 0x05. PostDiv, Driver Control ...................................................................................................... 34
9.7. Register Address: 0x06. mDriver, Driver Control ...................................................................................................... 35
2
10 I C Operation ........................................................................................................................................................................ 36
2
10.1. I C protocol ............................................................................................................................................................... 36
2
10.2. I C Timing Specification ............................................................................................................................................ 38
2
10.3. I C Device Address Modes ....................................................................................................................................... 39
Dimensions and Patterns ........................................................................................................................................................... 46
Additional Information ................................................................................................................................................................ 47
Revision History ......................................................................................................................................................................... 48
Rev 0.91
Page 3 of 48
www.sitime.com
SiT3522
340 to 725 MHz Elite™ I
2
C/SPI Programmable Oscillator
1 Electrical Characteristics
PRELIMINARY
All Min and Max limits in the Electrical Characteristics tables are specified over temperature and rated operating voltage with
standard output terminations shown in the termination diagrams. Typical values are at 25°C and nominal supply voltage.
Table 1. Electrical Characteristics – Common to LVPECL, LVDS and HCSL
Parameter
Output Frequency Range
Symbol
f
Min.
340.000001
340.000001
Typ.
–
–
Max.
725.000000
500.000000
Unit
MHz
MHz
Condition
LVDS and LVPECL output driver, factory or user
programmable, accurate to 6 decimal places
HCSL output driver, factory or user programmable, accurate to
6 decimal places
Inclusive of initial tolerance, operating temperature, rated
power supply voltage and load variations
Frequency Range
Frequency Stability
Frequency Stability
F_stab
-20
-20
-25
-50
First Year Aging
Operating Temperature Range
F_1y
T_use
–
-20
-40
-40
Supply Voltage
Vdd
2.97
2.7
2.52
2.25
Input Voltage High
Input Voltage Low
Input Pull-up Impedance
Duty Cycle
Start-up Time
Output Enable/Disable Time –
Hardware control via OE pin
Output Enable/Disable Time –
Software control via I
2
C/SPI
VIH
VIL
Z_in
DC
T_start
T_oe_hw
70%
–
–
45
–
–
–
–
–
–
±1
–
–
–
3.3
3.0
2.8
2.5
–
–
100
–
–
–
+20
+20
+25
+50
–
+70
+85
+105
Supply Voltage
3.63
3.3
3.08
2.75
–
30%
–
55
3.0
9.1
V
V
V
V
Vdd
Vdd
kΩ
%
ms
µs
Measured from the time Vdd reaches its rated minimum value
Measured from the time OE pin reaches rated VIH and VIL to
the time clock pins reach 90% of swing and high-Z.
See
Figure 9
and
Figure 10
Measured from the time the last byte of command is
transmitted via I
2
C/SPI (reg1) to the time clock pins reach 90%
of swing and high-Z. See
Figure 30
and
Figure 31
OE pin
OE pin
OE pin, logic high or logic low
ppm
ppm
ppm
ppm
ppm
°C
°C
°C
1 -year aging at 25°C
Extended Commercial
Industrial
Extended Industrial. Available only for I C operation, not SPI.
2
st
Temperature Range
Input Characteristics – OE Pin
Output Characteristics
Startup and Output Enable/Disable Timing
T_oe_sw
–
–
11.8
µs
Rev 0.91
Page 4 of 48
www.sitime.com
SiT3522
340 to 725 MHz Elite™ I
2
C/SPI Programmable Oscillator
Table 2. Electrical Characteristics – LVPECL Specific
Parameter
Symbol
Min.
Typ.
Max.
Unit
PRELIMINARY
Condition
Current Consumption
Current Consumption
OE Disable Supply Current
Output Disable Leakage Current
Maximum Output Current
Idd
I_OE
I_leak
I_driver
–
–
–
–
–
–
0.10
–
94
63
–
30
mA
mA
A
mA
Excluding Load Termination Current, Vdd = 3.3V or 2.5V
OE = Low
OE = Low
Maximum average current drawn from OUT+ or OUT-
Output Characteristics
Output High Voltage
Output Low Voltage
Output Differential Voltage Swing
Rise/Fall Time
VOH
VOL
V_Swing
Tr, Tf
Vdd - 1.1V
Vdd - 1.9V
1.2
–
–
–
1.6
225
Vdd - 0.7V
Vdd - 1.5V
2.0
290
Jitter
RMS Phase Jitter (random) –
DCO Mode Only
T_phj
–
–
RMS Phase Jitter (random) –
Any-frequency Mode Only
T_phj
–
–
RMS Period Jitter
[3]
Note:
3. Measured according to JESD65B
T_jitt
–
0.22
0.075
0.23
0.09
1
0.260
0.085
0.325
0.095
1.6
ps
ps
ps
ps
ps
f = 622.08 MHz, Integration bandwidth = 12 kHz to 20 MHz,
all Vdd levels
f = 622.08, IEEE802.3-2005 10 GbE jitter mask integration
bandwidth = 1.875 MHz to 20 MHz, all Vdd levels
f = 622.08 MHz, Integration bandwidth = 12 kHz to 20 MHz,
all Vdd levels
f = 622.08, IEEE802.3-2005 10 GbE jitter mask integration
bandwidth = 1.875 MHz to 20 MHz, all Vdd levels
f = 622.08 MHz, Vdd = 3.3V or 2.5V
V
V
V
ps
See
Figure 5
See
Figure 5
See
Figure 6
20% to 80%, see
Figure 6
Table 3. Electrical Characteristics – LVDS Specific
Parameter
Symbol
Min.
Typ.
Max.
Unit
Condition
Current Consumption
Current Consumption
OE Disable Supply Current
Output Disable Leakage Current
Idd
I_OE
I_leak
–
–
–
–
–
0.15
89
67
–
mA
mA
A
Excluding Load Termination Current, Vdd = 3.3V or 2.5V
OE = Low
OE = Low
Output Characteristics
Differential Output Voltage
Delta VOD
Offset Voltage
Delta VOS
Rise/Fall Time
VOD
ΔVOD
VOS
ΔVOS
Tr, Tf
250
–
1.125
–
–
–
–
–
–
340
530
50
1.375
50
460
Jitter
RMS Phase Jitter (random) –
DCO Mode Only
T_phj
–
–
RMS Phase Jitter (random) –
Any-frequency Mode Only
T_phj
–
–
RMS Period Jitter
[4]
Note:
4. Measured according to JESD65B.
T_jitt
–
0.21
0.060
0.21
0.070
1
0.255
0.070
0.320
0.80
1.6
ps
ps
ps
ps
ps
f = 622.08 MHz, Integration bandwidth = 12 kHz to 20 MHz,
all Vdd levels
f = 622.08 MHz, IEEE802.3-2005 10 GbE jitter mask
integration bandwidth = 1.875 MHz to 20 MHz, all Vdd levels
f = 622.08 MHz, Integration bandwidth = 12 kHz to 20 MHz,
all Vdd levels
f = 622.08 MHz, IEEE802.3-2005 10 GbE jitter mask
integration bandwidth = 1.875 MHz to 20 MHz, all Vdd levels
f = 622.08 MHz, Vdd = 3.3V or 2.5V
mV
mV
V
mV
ps
f = 622.08 MHz. See
Figure 7
See
Figure 7
See
Figure 7
See
Figure 7
Measured with 2 pF capacitive loading to GND, 20% to 80%,
[i=s]This post was last edited by MrKingMCU on 2018-10-12 19:33[/i] Test equipment: GW Instek desktop power supply PPE-3323 Fluke multimeter 15B+ The test items are mainly the parameters of the LED Te...
I am a novice and basically have no knowledge of motor control. Here is a question for the experts: Do drivers with high control accuracy requirements usually have operating systems? Do drivers that c...
It is not an exaggeration to describe the power supply on the market today as "suddenly, a spring breeze comes, and thousands of pear trees bloom". What choice should we make in the face of these blos...
What would you do when designing a pulse load power supply? What would happen if the pulse load device is designed based on the peak power only? Power expert Vicor: It is important to note that the pe...
[size=4]The first one is the table lookup method[/size] [size=4] [/size] [size=4]For example, I have three data[/size] [size=4] [/size] [size=4]char code table={0x01, 0x02, 0x03} corresponding to 0xa,...
Features of this book:This book is written in accordance with the idea of "following the clock tree and combining the firmware library" to help readers quickly get started; modular design is combined ...
There is a backup register (BKP) in STM32. One of its functions is to store the check register of the RTC check value, that is, it has the RTC calibration function. Output the RTC calibration clock, ...[Details]
The crossover network
This is one of those things you just have to design by ear. No computer simulations here. I had tried simulating it with the help of software but what measured good and what ...[Details]
An oscilloscope is an electronic measuring instrument with a wide range of uses. It can transform invisible electrical signals into visible images, making it easier for people to study the changing...[Details]
The stacked chip method is now receiving more attention, but the design flow that supports stacked chips does not seem to be very mature yet. Advanced packaging technologies are seen as a replaceme...[Details]
Features of single chip microcomputer: (1) Due to the limitation of integration, the on-chip memory capacity is small, generally the internal ROM is less than 8KB; (2) Internal RAM: within 256K...[Details]
Gallium oxide (Ga2O3) detector is a photodetector based on ultra-wide bandgap semiconductor materials, mainly used for the detection of day-blind ultraviolet light.
Its unique physical and ch...[Details]
Almost every electronic system has filters, whether passive, active or digital. Engineers usually start with the frequency response and type of filter in mind. For simple passive filtering, supply vol...[Details]
IPC - Association Connecting Electronics Industries® released a global research report this month: " PCB Technology Trends 2016 ". The report uses data research to focus on how PCB manufacturers...[Details]
1. The most commonly used combustion dish for calorimetric determination is a stainless steel combustion dish, while the platinum combustion dish is the best to ensure that the coal sample is complete...[Details]
IT Home reported on April 6 that Apple today pushed the iOS/iPadOS 15.5 Developer Preview Beta update (internal version number: 19F5047e) to iPhone and iPad users. This update was released 5 weeks af...[Details]
Smartphone makers including Apple should be required to provide security patch support and spare parts for iPhones and other devices for seven years to make the product category more environmen...[Details]
Founded in 1995, Marvell was once ranked among the top five semiconductor companies in the world at its peak. When China issued 4G licenses in 2013, Marvell was ahead of MediaTek and Spreadtrum in la...[Details]
At 3 pm on October 22, Samsung China posted a microblog to introduce the graphene battery. It is a new energy battery that can increase the battery charge capacity by 45%, is high temperature resis...[Details]
Explanation on "Read-Modify-Write" of PIC microcontroller
Topic: I have seen references to "Read-Modify-Write" instructions in your datasheet, but I do not know what that is. Can you explain what i...[Details]