Multi-Purpose Flash (MPF) + SRAM ComboMemory
SST32HF202 / SST32HF402 / SST32HF802
SST32HF200 / SST32HF400/ SST32HF800
SST32HF202 / 402 / 8022Mb Flash + 2Mb SRAM, 4Mb Flash + 2Mb SRAM, 8Mb Flash + 2Mb SRAM
(x16) MCP ComboMemories
Data Sheet
FEATURES:
• MPF + SRAM ComboMemory
– SST32HF202: 128K x16 Flash + 128K x16 SRAM
– SST32HF402: 256K x16 Flash + 128K x16 SRAM
– SST32HF802: 512K x16 Flash + 128K x16 SRAM
– SST32HF200: 128K x16 Flash only
– SST32HF400: 256K x16 Flash only
– SST32HF800: 512K x16 Flash only
• Single 2.7-3.3V Read and Write Operations
• Concurrent Operation
– Read from or write to SRAM while
Erase/Program Flash
• Superior Reliability
– Endurance: 100,000 Cycles (typical)
– Greater than 100 years Data Retention
• Low Power Consumption:
– Active Current: 15 mA (typical) for
Flash or SRAM Read
– Standby Current: 20 µA (typical)
• Flexible Erase Capability
– Uniform 2 KWord sectors
– Uniform 32 KWord size blocks
• Fast Read Access Times:
– Flash: 70 and 90 ns
– SRAM: 70 and 90 ns
• Latched Address and Data for Flash
• Flash Fast Erase and Word-Program:
– Sector-Erase Time: 18 ms (typical)
– Block-Erase Time: 18 ms (typical)
– Chip-Erase Time: 70 ms (typical)
– Word-Program Time: 14 µs (typical)
– Chip Rewrite Time:
SST32HF20x: 2 seconds (typical)
SST32HF40x: 4 seconds (typical)
SST32HF80x: 8 seconds (typical)
• Flash Automatic Erase and Program Timing
– Internal V
PP
Generation
• Flash End-of-Write Detection
– Toggle Bit
– Data# Polling
• CMOS I/O Compatibility
• JEDEC Standard Command Set
• Conforms to Flash pinout
• Packages Available
– 48-ball LFBGA (6mm x 8mm)
– 48-ball LBGA (10mm x 12mm)
(SST32HF802 only)
PRODUCT DESCRIPTION
The SST32HF202/402/802 ComboMemory devices inte-
grate a 128K x16, 256K x16, 512K x16 CMOS flash mem-
ory bank with a 128K x16 CMOS SRAM memory bank in a
Multi-Chip Package (MCP), manufactured with SST’s pro-
prietary, high performance SuperFlash technology.
Featuring high performance Word-Program, the flash
memory bank provides a maximum Word-Program time of
14 µsec. The entire flash memory bank can be erased and
programmed word-by-word in typically 2 seconds for the
SST32HF20x, 4 seconds for the SST32HF40x, and 8 sec-
onds for the SST32HF80x, when using interface features
such as Toggle Bit or Data# Polling to indicate the comple-
tion of Program operation. To protect against inadvertent
flash write, the SST32HF20x/40x/80x devices contain on-
chip hardware and software data protection schemes. The
SST32HF20x/40x/80x devices offer a guaranteed endur-
ance of 10,000 cycles. Data retention is rated at greater
than 100 years.
The SST32HF202/402/802 devices consist of two inde-
pendent memory banks with respective bank enable sig-
nals. The Flash and SRAM memory banks are
superimposed in the same memory address space. Both
©2003 Silicon Storage Technology, Inc.
S71209-03-000
3/03
1
memory banks share common address lines, data lines,
WE# and OE#. The memory bank selection is done by
memory bank enable signals. The SRAM bank enable sig-
nal, BES# selects the SRAM bank. The flash memory
bank enable signal, BEF# selects the flash memory bank.
The WE# signal has to be used with Software Data Protec-
tion (SDP) command sequence when controlling the Erase
and Program operations in the flash memory bank. The
SDP command sequence protects the data stored in the
flash memory bank from accidental alteration.
The SST32HF202/402/802 provide the added functionality
of being able to simultaneously read from or write to the
SRAM bank while erasing or programming in the flash
memory bank. The SRAM memory bank can be read or
written while the flash memory bank performs Sector-
Erase, Bank-Erase, or Word-Program concurrently. All
flash memory Erase and Program operations will automati-
cally latch the input address and data signals and complete
the operation in background without further input stimulus
requirement. Once the internally controlled Erase or Pro-
gram cycle in the flash bank has commenced, the SRAM
bank can be accessed for Read or Write.
The SST logo and SuperFlash are registered trademarks of Silicon Storage Technology, Inc.
MPF and ComboMemory are trademarks of Silicon Storage Technology, Inc.
These specifications are subject to change without notice.
Multi-Purpose Flash (MPF) + SRAM ComboMemory
SST32HF202 / SST32HF402 / SST32HF802
SST32HF200 / SST32HF400/ SST32HF800
Data Sheet
The SST32HF202/402/802 devices are suited for applica-
tions that use both flash memory and SRAM memory to
store code or data. For systems requiring low power and
small form factor, the SST32HF20x/40x/80x devices signifi-
cantly improve performance and reliability, while lowering
power consumption, when compared with multiple chip
solutions. The SST32HF20x/40x/80x inherently use less
energy during erase and program than alternative flash
technologies. The total energy consumed is a function of
the applied voltage, current, and time of application. Since
for any given voltage range, the SuperFlash technology
uses less current to program and has a shorter erase time,
the total energy consumed during any Erase or Program
operation is less than alternative flash technologies.
The SuperFlash technology provides fixed Erase and Pro-
gram times, independent of the number of Erase/Program
cycles that have occurred. Therefore the system software
or hardware does not have to be modified or de-rated as is
necessary with alternative flash technologies, whose
Erase and Program times increase with accumulated
Erase/Program cycles.
The 48-ball LFBGA (6mm x 8mm) SST32HF20x/40x/80x
provides a migration path from a flash-only configuration to
Flash and SRAM ComboMemory device. Migration from
2M flash-only SST32HF200-xx-4x-L3K to 8M Flash + 2M
SRAM SST32HF802-xx-4x-L3K can be accommodated in
the same socket without the need for board modification.
control signals UBS# and LBS# provide access to the
upper data byte and lower data byte. See Table 3 for SRAM
Read and Write data byte control modes of operation.
SRAM Read
The SRAM Read operation of the SST32HF202/402/802 is
controlled by OE# and BES#, both have to be low with
WE# high for the system to obtain data from the outputs.
BES# is used for SRAM bank selection. OE# is the output
control and is used to gate data from the output pins. The
data bus is in high impedance state when OE# is high. See
Figure 3 for the Read cycle timing diagram.
SRAM Write
The SRAM Write operation of the SST32HF202/402/802 is
controlled by WE# and BES#, both have to be low for the
system to write to the SRAM. During the Word-Write oper-
ation, the addresses and data are referenced to the rising
edge of either BES# or WE#, whichever occurs first. The
write time is measured from the last falling edge to the first
rising edge of BES# or WE#. See Figures 4 and 5 for the
Write cycle timing diagrams.
Flash Operation
With BEF# active, the SST32HF20x operates as 128K x16
flash memory, the SST32HF40x operates as 256K x16
flash memory, and the SST32HF80x operates as 512K
x16 flash memory. The flash memory bank is read using
the common address lines, data lines, WE# and OE#.
Erase and Program operations are initiated with the
JEDEC standard SDP command sequences. Address and
data are latched during the SDP commands and during the
internally-timed Erase and Program operations.
Device Operation
The ComboMemory uses BES# and BEF# to control oper-
ation of either the SRAM or the flash memory bank. When
BES# is low, the SRAM Bank is activated for Read and
Write operation. When BEF# is low the flash bank is acti-
vated for Read, Program or Erase operation. BES# and
BEF# cannot be at low level at the same time.
If BES# and
BEF# are both asserted to low level bus contention will
result and the device may suffer permanent damage.
All address, data, and control lines are shared by SRAM
Bank and flash bank which minimizes power consumption
and loading. The device goes into standby when both bank
enables are high.
Flash Read
The Read operation of the SST32HF20x/40x/80x devices
is controlled by BEF# and OE#. Both have to be low, with
WE# high, for the system to obtain data from the outputs.
BEF# is used for flash memory bank selection. When
BEF# and BES# are high, both banks are deselected and
only standby power is consumed. OE# is the output con-
trol and is used to gate data from the output pins. The data
bus is in high impedance state when OE# is high. Refer to
Figure 6 for further details.
SRAM Operation
With BES# low and BEF# high, the SST32HF202/402/802
operate as 128K x16 CMOS SRAM, with fully static opera-
tion requiring no external clocks or timing strobes. The
SST32HF202/402/802 SRAM is mapped into the first 128
KWord address space. When BES# and BEF# are high,
both memory banks are deselected and the device enters
standby mode. Read and Write cycle times are equal. The
Flash Erase/Program Operation
SDP commands are used to initiate the flash memory bank
Program and Erase operations of the SST32HF20x/40x/
80x. SDP commands are loaded to the flash memory bank
using standard microprocessor Write sequences. A com-
S71209-03-000
3/03
©2003 Silicon Storage Technology, Inc.
2
Multi-Purpose Flash (MPF) + SRAM ComboMemory
SST32HF202 / SST32HF402 / SST32HF802
SST32HF200 / SST32HF400/ SST32HF800
Data Sheet
mand is loaded by asserting WE# low while keeping BEF#
low and OE# high. The address is latched on the falling
edge of WE# or BEF#, whichever occurs last. The data is
latched on the rising edge of WE# or BEF#, whichever
occurs first.
Polling or Toggle Bit methods. See Figures 12 and 13 for
timing waveforms. Any commands issued during the Sec-
tor- or Block-Erase operation are ignored.
Flash Chip-Erase Operation
The SST32HF20x/40x/80x provide a Chip-Erase opera-
tion, which allows the user to erase the entire memory
array to the “1” state. This is useful when the entire device
must be quickly erased.
The Chip-Erase operation is initiated by executing a six-
byte command sequence with Chip-Erase command (10H)
at address 5555H in the last byte sequence. The Erase
operation begins with the rising edge of the sixth WE# or
CE#, whichever occurs first. During the Erase operation,
the only valid read is Toggle Bit or Data# Polling. See Table
4 for the command sequence, Figure 10 for timing diagram,
and Figure 21 for the flowchart. Any commands issued dur-
ing the Chip-Erase operation are ignored.
Flash Word-Program Operation
The flash memory bank of the SST32HF20x/40x/80x
devices is programmed on a word-by-word basis. Before
Program operations, the memory must be erased first. The
Program operation consists of three steps. The first step is
the three-byte load sequence for Software Data Protection.
The second step is to load word address and word data.
During the Word-Program operation, the addresses are
latched on the falling edge of either BEF# or WE#, which-
ever occurs last. The data is latched on the rising edge of
either BEF# or WE#, whichever occurs first. The third step is
the internal Program operation which is initiated after the ris-
ing edge of the fourth WE# or BEF#, whichever occurs first.
The Program operation, once initiated, will be completed,
within 20 µs. See Figures 7 and 8 for WE# and BEF# con-
trolled Program operation timing diagrams and Figure 18 for
flowcharts. During the Program operation, the only valid
flash Read operations are Data# Polling and Toggle Bit.
During the internal Program operation, the host is free to
perform additional tasks. Any SDP commands loaded dur-
ing the internal Program operation will be ignored.
Write Operation Status Detection
The SST32HF20x/40x/80x provide two software means to
detect the completion of a Write (Program or Erase) cycle,
in order to optimize the system Write cycle time. The soft-
ware detection includes two status bits: Data# Polling
(DQ
7
) and Toggle Bit (DQ
6
). The End-of-Write detection
mode is enabled after the rising edge of WE#, which ini-
tiates the internal Program or Erase operation.
The actual completion of the nonvolatile write is asynchro-
nous with the system; therefore, either a Data# Polling or
Toggle Bit read may be simultaneous with the completion
of the Write cycle. If this occurs, the system may possibly
get an erroneous result, i.e., valid data may appear to con-
flict with either DQ
7
or DQ
6.
In order to prevent spurious
rejection, if an erroneous result occurs, the software routine
should include a loop to read the accessed location an
additional two (2) times. If both reads are valid, then the
device has completed the Write cycle, otherwise the rejec-
tion is valid.
Flash Sector/Block-Erase Operation
The Flash Sector/Block-Erase operation allows the system
to erase the device on a sector-by-sector (or block-by-
block) basis. The SST32HF20x/40x/80x offer both Sector-
Erase and Block-Erase mode. The sector architecture is
based on uniform sector size of 2 KWord. The Block-Erase
mode is based on uniform block size of 32 KWord. The
Sector-Erase operation is initiated by executing a six-byte
command sequence with Sector-Erase command (30H)
and sector address (SA) in the last bus cycle. The address
lines A
16
-A
11,
for SST32HF20x, A
17
-A
11,
for SST32HF40x,
and A
18
-A
11,
for SST32HF80x, are used to determine the
sector address. The Block-Erase operation is initiated by
executing a six-byte command sequence with Block-Erase
command (50H) and block address (BA) in the last bus
cycle. The address lines A
16
-A
15
, for SST32HF20x, A
17
-
A
15
, for SST32HF40x, and A
18
-A
15
, for SST32HF80x, are
used to determine the block address. The sector or block
address is latched on the falling edge of the sixth WE#
pulse, while the command (30H or 50H) is latched on the
rising edge of the sixth WE# pulse. The internal Erase
operation begins after the sixth WE# pulse. The End-of-
Erase operation can be determined using either Data#
Flash Data# Polling (DQ
7
)
When the SST32HF20x/40x/80x flash memory banks are
in the internal Program operation, any attempt to read DQ
7
will produce the complement of the true data. Once the
Program operation is completed, DQ
7
will produce true
data. Note that even though DQ
7
may have valid data
immediately following the completion of an internal Write
operation, the remaining data outputs may still be invalid:
valid data on the entire data bus will appear in subsequent
successive Read cycles, after an interval of 1 µs. During
internal Erase operation, any attempt to read DQ
7
will pro-
S71209-03-000
3/03
©2003 Silicon Storage Technology, Inc.
3
Multi-Purpose Flash (MPF) + SRAM ComboMemory
SST32HF202 / SST32HF402 / SST32HF802
SST32HF200 / SST32HF400/ SST32HF800
Data Sheet
duce a ‘0’. Once the internal Erase operation is completed,
DQ
7
will produce a ‘1’. The Data# Polling is valid after the
rising edge of the fourth WE# (or BEF#) pulse for Program
operation. For Sector- or Block-Erase, the Data# Polling is
valid after the rising edge of the sixth WE# (or BEF#) pulse.
See Figure 9 for Data# Polling timing diagram and Figure
19 for a flowchart.
Concurrent Read and Write Operations
The SST32HF202/402/802 provide the unique benefit of
being able to read from or write to SRAM, while simulta-
neously erasing or programming the Flash. This allows
data alteration code to be executed from SRAM, while alter-
ing the data in Flash. The following table lists all valid states.
C
ONCURRENT
R
EAD
/W
RITE
S
TATE
T
ABLE
Flash
Program/Erase
Program/Erase
SRAM
Read
Write
Flash Toggle Bit (DQ
6
)
During the internal Program or Erase operation, any con-
secutive attempts to read DQ
6
will produce alternating ‘1’s
and ‘0’s, i.e., toggling between 1 and 0. When the internal
Program or Erase operation is completed, the toggling will
stop. The flash memory bank is then ready for the next
operation. The Toggle Bit is valid after the rising edge of the
fourth WE# (or BEF#) pulse for Program operation. For
Sector- or Bank-Erase, the Toggle Bit is valid after the rising
edge of the sixth WE# (or BEF#) pulse. See Figure 10 for
Toggle Bit timing diagram and Figure 19 for a flowchart.
The device will ignore all SDP commands when an Erase
or Program operation is in progress. Note that Product
Identification commands use SDP; therefore, these com-
mands will also be ignored while an Erase or Program
operation is in progress.
Product Identification
The Product Identification mode identifies the devices as
the SST32HF20x/40x/80x and manufacturer as SST.
This
mode may be accessed by software operations only.
The hardware device ID Read operation, which is typi-
cally used by programmers, cannot be used on this
device because of the shared lines between flash and
SRAM in the multi-chip package. Therefore, applica-
tion of high voltage to pin A
9
may damage this device.
Users may use the software Product Identification opera-
tion to identify the part (i.e., using the device ID) when using
multiple manufacturers in the same socket. For details, see
Tables 3 and 4 for software operation, Figure 14 for the
software ID entry and Read timing diagram, and Figure 20
for the ID entry command sequence flowchart.
TABLE 1: P
RODUCT
I
DENTIFICATION
Address
Manufacturer’s ID
Device ID
SST32HF20x
SST32HF40x
SST32HF80x
0001H
0001H
0001H
2789H
2780H
2781H
T1.2 1209
Flash Memory Data Protection
The SST32HF20x/40x/80x flash memory bank provides
both hardware and software features to protect nonvolatile
data from inadvertent writes.
Flash Hardware Data Protection
Noise/Glitch Protection: A WE# or BEF# pulse of less than
5 ns will not initiate a Write cycle.
V
DD
Power Up/Down Detection: The Write operation is
inhibited when V
DD
is less than 1.5V.
Write Inhibit Mode: Forcing OE# low, BEF# high, or WE#
high will inhibit the Flash Write operation. This prevents
inadvertent writes during power-up or power-down.
Flash Software Data Protection (SDP)
The SST32HF20x/40x/80x provide the JEDEC approved
software data protection scheme for all flash memory bank
data alteration operations, i.e., Program and Erase. Any
Program operation requires the inclusion of a series of
three-byte sequence. The three-byte load sequence is
used to initiate the Program operation, providing optimal
protection from inadvertent Write operations, e.g., during
the system power-up or power-down. Any Erase operation
requires the inclusion of six-byte load sequence. The
SST32HF20x/40x/80x devices are shipped with the soft-
ware data protection permanently enabled. See Table 4 for
the specific software command codes. During SDP com-
mand sequence, invalid SDP commands will abort the
device to the Read mode, within Read cycle time (T
RC
).
©2003 Silicon Storage Technology, Inc.
Data
00BFH
0000H
Product Identification Mode Exit/Reset
In order to return to the standard read mode, the Software
Product Identification mode must be exited. Exiting is
accomplished by issuing the Exit ID command sequence,
which returns the device to the Read operation. Please
note that the software reset command is ignored during an
S71209-03-000
3/03
4
Multi-Purpose Flash (MPF) + SRAM ComboMemory
SST32HF202 / SST32HF402 / SST32HF802
SST32HF200 / SST32HF400/ SST32HF800
Data Sheet
internal Program or Erase operation. See Table 4 for soft-
ware command codes, Figure 15 for timing waveform and
Figure 20 for a flowchart.
Design Considerations
SST recommends a high frequency 0.1 µF ceramic capac-
itor to be placed as close as possible between V
DD
and
V
SS
, e.g., less than 1 cm away from the V
DD
pin of the
device. Additionally, a low frequency 4.7 µF electrolytic
capacitor from V
DD
to V
SS
should be placed within 1 cm of
the V
DD
pin.
F
UNCTIONAL
B
LOCK
D
IAGRAM
Address Buffers
SRAM
AMS-A0
UBS#
LBS#
BES#
BEF#
OE#
WE#
Control Logic
I/O Buffers
DQ15 - DQ8
DQ7 - DQ0
Address Buffers
& Latches
SuperFlash
Memory
1209 B1.0
©2003 Silicon Storage Technology, Inc.
S71209-03-000
3/03
5