Operating Temperature Range (Note 4).... –40°C to 85°C
Specified Temperature Range (Note 5) .... –40°C to 85°C
Junction Temperature ........................................... 150°C
Storage Temperature Range................... –65°C to 150°C
–IN1 B 10
–IN4 B 11
DJC PACKAGE
22-LEAD (6mm
×
3mm) PLASTIC DFN
T
JMAX
= 150°C,
θ
JA
= 46.5°C/W
,
EXPOSED PAD (PIN 23) IS V
–
MUST BE SOLDERED TO PCB
ORDER INFORMATION
LEAD FREE FINISH
LTC6605CDJC-10#PBF
LTC6605IDJC-10#PBF
TAPE AND REEL
PART MARKING*
PACKAGE DESCRIPTION
22-Lead (6mm
×
3mm) Plastic DFN
22-Lead (6mm
×
3mm) Plastic DFN
TEMPERATURE RANGE
0°C to 70°C
–40°C to 85°C
LTC6605CDJC-10#TRPBF 660510
LTC6605IDJC-10#TRPBF 660510
Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container.
Consult LTC Marketing for information on non-standard lead based finish parts.
For more information on lead free part marking, go to:
http://www.linear.com/leadfree/
For more information on tape and reel specifications, go to:
http://www.linear.com/tapeandreel/
DC ELECTRICAL CHARACTERISTICS
+
The
l
denotes the specifications which apply over the full operating
–
+
SYMBOL
V
OS
ΔV
OS
/ΔT
I
B
I
OS
PARAMETER
Differential Offset Voltage (at Op Amp
Inputs) (Note 6)
Differential Offset Voltage Drift (at Op
Amp Inputs)
Input Bias Current (at Op Amp Inputs)
(Note 7)
Input Offset Current
(at Op Amp Inputs) (Note 7)
CONDITIONS
V
S
= 2.7V to 5V
BIAS = V
+
BIAS = Floating
BIAS = V
+
BIAS = Floating
l
l
l
l
l
temperature range, otherwise specifications are at T
A
= 25°C. V = 3V, V = 0V, V
INCM
= V
OCM
= mid-supply, BIAS tied to V , R
L
= Open,
R
BAL
= 10k. The filter is configured for a gain of 1, unless otherwise noted. V
S
is defined as (V
+
– V
–
). V
OUTCM
is defined as (V
+OUT
+
V
–OUT
)/2. V
INCM
is defined as (V
INP
+ V
INM
)/2. V
OUTDIFF
is defined as (V
+OUT
– V
–OUT
). V
INDIFF
is defined as (V
INP
– V
INM
). See Figure 1.
MIN
TYP
±0.25
±1
±1
–60
–30
–25
–12.5
±1
0
0
MAX
±1
UNITS
mV
μV/°C
μV/°C
μA
μA
μA
660510f
2
LTC6605-10
DC ELECTRICAL CHARACTERISTICS
+
The
l
denotes the specifications which apply over the full operating
–
+
SYMBOL
V
INCM
CMRR
PSRR
V
OSCM
V
OCM
V
MID
R
VOCM
V
OUT
PARAMETER
Input Common Mode Voltage Range
(Note 8)
Common Mode Rejection Ratio
(ΔV
INCM
/ΔV
OS
) (Note 9)
Power Supply Rejection Ratio
(ΔV
S
/ΔV
OS
) (Note 10)
Common Mode Offset Voltage
(V
OUTCM
– V
OCM
)
Output Common Mode Range
(Valid Range for V
OCM
Pin) (Note 8)
Self-Biased Voltage at the V
OCM
Pin
Input Resistance of V
OCM
Pin
Output Voltage Swing, High
(Measured Relative to V
+
)
V
S
= 3V; I
L
= 0mA
V
S
= 3V; I
L
= 5mA
V
S
= 3V; I
L
= 20mA
V
S
= 5V; I
L
= 0mA
V
S
= 5V; I
L
= 5mA
V
S
= 5V; I
L
= 20mA
Output Voltage Swing, Low
(Measured Relative to V
–
)
V
S
= 3V; I
L
= 0mA
V
S
= 3V; I
L
= –5mA
V
S
= 3V; I
L
= –20mA
V
S
= 5V; I
L
= 0mA
V
S
= 5V; I
L
= –5mA
V
S
= 5V; I
L
= –20mA
I
SC
V
S
I
S
Output Short-Circuit Current (Note 3)
Supply Voltage
Supply Current (per Channel)
V
S
= 2.7V to 5V; BIAS = V
+
V
S
= 2.7V to 5V; BIAS = Floating
V
S
= 2.7V to 5V; BIAS = V
–
Referenced to V
–
Referenced to V
–
Referenced to V
–
V
S
= 3V
V
S
= 5V
CONDITIONS
V
S
= 3V
V
S
= 5V
V
S
= 3V; ΔV
INCM
= 1.5V
V
S
= 5V; ΔV
INCM
= 2.5V
V
S
= 2.7V to 5V
V
S
= 3V
V
S
= 5V
V
S
= 3V
V
S
= 5V
V
S
= 3V
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
temperature range, otherwise specifications are at T
A
= 25°C. V = 3V, V = 0V, V
INCM
= V
OCM
= mid-supply, BIAS tied to V , R
L
= Open,
R
BAL
= 10k. The filter is configured for a gain of 1, unless otherwise noted. V
S
is defined as (V
+
– V
–
). V
OUTCM
is defined as (V
+OUT
+
V
–OUT
)/2. V
INCM
is defined as (V
INP
+ V
INM
)/2. V
OUTDIFF
is defined as (V
+OUT
– V
–OUT
). V
INDIFF
is defined as (V
INP
– V
INM
). See Figure 1.
MIN
–0.2
–0.2
46
46
66
74
74
95
±10
±10
1.1
1.1
1.475
12.5
1.5
18
245
285
415
350
390
550
120
135
195
175
200
270
±40
±50
2.7
33.1
16.2
0.35
0
1
2.3
1.05
100
1.15
150
400
400
±70
±95
5.25
45
26.5
1.6
0.4
1.5
V
S
1.25
200
±15
±15
2
4
1.525
23.5
450
525
750
625
700
1000
225
250
350
325
360
475
TYP
MAX
1.7
4.7
UNITS
V
V
dB
dB
dB
mV
mV
V
V
V
kΩ
mV
mV
mV
mV
mV
mV
mV
mV
mV
mV
mV
mV
mA
mA
V
mA
mA
mA
V
V
V
V
kΩ
ns
ns
BIAS Pin Range for Shutdown
BIAS Pin Range for Medium Power
BIAS Pin Range for Full Power
R
BIAS
t
ON
t
OFF
BIAS Pin Input Resistance
Turn-On Time
Turn-Off Time
BIAS Pin Self-Biased Voltage (Floating) Referenced to V
–
V
S
= 3V, V
BIAS
= V
–
to V
+
V
S
= 3V, V
BIAS
= V
+
to V
–
660510f
3
LTC6605-10
AC ELECTRICAL CHARACTERISTICS
+
The
l
denotes the specifications which apply over the full operating
–
+
temperature range, otherwise specifications are at T
A
= 25°C. V = 3V, V = 0V, V
INCM
= V
OCM
= mid-supply, V
BIAS
= V , unless
otherwise noted. Filter configured as in Figure 2, unless otherwise noted. V
S
is defined as (V
+
– V
–
). V
OUTCM
is defined as (V
+OUT
+
V
–OUT
)/2. V
INCM
is defined as (V
+IN
+ V
–IN
)/2. V
OUTDIFF
is defined as (V
+OUT
– V
–OUT
). V
INDIFF
is defined as (V
+IN
+ V
–IN
).
SYMBOL
Gain
PARAMETER
Filter Gain
CONDITIONS
ΔV
IN
= ±0.125V, DC
V
INDIFF
= 0.5V
P-P
, f = 5MHz
V
INDIFF
= 0.5V
P-P
, f = 7.5MHz
V
INDIFF
= 0.5V
P-P
, f = 10MHz
V
INDIFF
= 0.5V
P-P
, f = 20MHz
V
INDIFF
= 0.5V
P-P
, f = 50MHz
ΔV
IN
= ±0.125V, DC
V
INDIFF
= 0.5V
P-P
, f = 5MHz
V
INDIFF
= 0.5V
P-P
, f = 7.5MHz
V
INDIFF
= 0.5V
P-P
, f = 10MHz
ΔV
IN
= ±0.125V, DC
V
INDIFF
= 0.5V
P-P
, f = 5MHz
V
INDIFF
= 0.5V
P-P
, f = 7.5MHz
V
INDIFF
= 0.5V
P-P
, f = 10MHz
V
INDIFF
= 0.5V
P-P
, f = 5MHz
V
INDIFF
= 0.5V
P-P
, f = 7.5MHz
V
INDIFF
= 0.5V
P-P
, f = 10MHz
ΔV
IN
= ±0.125V, DC
V
INDIFF
= 1V
P-P
, f = 5MHz
BIAS = V
+
BIAS = Floating
l
l
l
l
l
l
l
l
l
l
l
l
l
l
MIN
–0.25
–1.1
–2.35
–4.05
–11.75
–28
TYP
±0.05
–0.77
–1.89
–3.5
–11.1
–25.8
0
–42.5
–63.2
–81.7
MAX
0.25
–0.4
–1.45
–3
–10.55
–24.8
UNITS
dB
dB
dB
dB
dB
dB
Deg
Deg
Deg
Deg
Phase
Filter Phase
ΔGain
Gain Match (Channel-to-Channel)
–0.2
–0.2
–0.3
–0.35
–1.1
–1.2
–1.2
11.85
±0.05
±0.05
±0.05
±0.05
±0.2
±0.2
±0.2
12
–96
–80
–260
69
0.2
0.2
0.3
0.35
1.1
1.2
1.2
12.25
dB
dB
dB
dB
Deg
Deg
Deg
dB
dB
ppm/°C
ppm/°C
μV
RMS
ΔPhase
Phase Match (Channel-to-Channel)
4V/V Gain
Filter Gain in 4V/V Configuration
Inputs at ±IN1 Pins, ±IN4 Pins Floating
Channel Separation
Filter Cut-Off Frequency Temperature
Coefficient
Integrated Output Noise
(BW = 10kHz to 20MHz)
f
O
TC
Noise
Input Referred Noise Density (f = 1MHz) BIAS = V
+
Figure 4, Gain = 1
Figure 4, Gain = 4
Figure 4, Gain = 5
e
n
i
n
HD2
HD3
Voltage Noise Density Referred to
Op Amp Inputs (f = 1MHz)
Current Noise Density Referred to
Op Amp Inputs (f = 1MHz)
2nd Harmonic Distortion
f
IN
= 5MHz; V
IN
= 2V
P-P
Single-Ended
3rd Harmonic Distortion
f
IN
= 5MHz; V
IN
= 2V
P-P
Single-Ended
BIAS = V
+
BIAS = Floating
BIAS = V
+
BIAS = Floating
BIAS = V
+
BIAS = Floating, R
LOAD
= 400Ω
BIAS = V
+
BIAS = Floating, R
LOAD
= 400Ω
20
5
4
2.1
2.6
3
2.1
–90
–75
–106
–82
nV/√Hz
nV/√Hz
nV/√Hz
nV/√Hz
nV/√Hz
pA/√Hz
pA/√Hz
dBc
dBc
dBc
dBc
Note 1:
Stresses beyond those listed under Absolute Maximum Ratings
may cause permanent damage to the device. Exposure to any Absolute
Maximum Rating condition for extended periods may affect device
reliability and lifetime.
Note 2:
All pins are protected by steering diodes to either supply. If any
pin is driven beyond the LTC6605-10’s supply voltage, the excess input
current (current in excess of what it takes to drive that pin to the supply
rail) should be limited to less than 10mA.
Note 3:
A heat sink may be required to keep the junction temperature
below the Absolute Maximum Rating when the output is shorted
indefinitely. Long-term application of output currents in excess of the
Absolute Maximum Ratings may impair the life of the device.
Note 4:
Both the LTC6605C and the LTC6605I are guaranteed functional
over the operating temperature range –40°C to 85°C.
Note 5:
The LTC6605C is guaranteed to meet specified performance
from 0°C to 70°C. The LTC6605C is designed, characterized and
expected to meet specified performance from –40°C to 85°C, but is
not tested or QA sampled at these temperatures. The LTC6605I is
guaranteed to meet specified performance from –40°C to 85°C.
Note 6:
Output referred voltage offset is a function of gain. To determine
output referred voltage offset, or output voltage offset drift, multiply V
OS
by the noise gain (1 + GAIN). See Figure 3.
Note 7:
Input bias current is defined as the average of the currents
flowing into the noninverting and inverting inputs of the internal amplifier
and is calculated from measurements made at the pins of the IC. Input
offset current is defined as the difference of the currents flowing into
the noninverting and inverting inputs of the internal amplifier and is
calculated from measurements made at the pins of the IC.
660510f
4
LTC6605-10
ELECTRICAL CHARACTERISTICS
Note 8:
See the Applications Information section for a detailed
discussion of input and output common mode range. Input common
mode range is tested by measuring the differential DC gain with V
INCM
= mid-supply, and again with V
INCM
at the input common mode range
limits listed in the Electrical Characteristics table, with ΔV
IN
= ±0.25V,
verifying that the differential gain has not deviated from the mid-supply
common mode input case by more than 0.5%, and that the common
mode offset (V
OSCM
) has not deviated from the mid-supply common
mode offset by more than ±10mV.
Output common mode range is tested by measuring the differential
DC gain with V
OCM
= mid-supply, and again with voltage set on the
V
OCM
pin at the output common range limits listed in the Electrical
Characteristics table verifying that the differential gain has not
deviated from the mid-supply common mode input case by more than
0.5%, and that the common mode offset (V
OSCM
) has not deviated by
more than ±10mV from the mid-supply case.
Note 9:
CMRR is defined as the ratio of the change in the input common
mode voltage at the internal amplifier inputs to the change in differential
input referred voltage offset (V
OS
).
Note 10:
Power supply rejection ratio (PSRR) is defined as the ratio of
the change in supply voltage to the change in differential input referred
From campus study to internship work means a lot of changes. I learned the 51 MCU series on campus, but my internship requires me to learn STM32. The leap is still quite big, and there are too many th...
This book is aimed at beginners who are determined to develop ZigBee wireless sensor networks and engineers who are transitioning to wireless network development. It introduces the basic theories of Z...
[Reposted from https://e2echina.ti.com/question_answer/microcontrollers/c2000/f/56/p/165972/488430?keyMatch=f280049%20CLBtisearch=Search-CN-Everything]Live lecturer: Tan HuiLive QA:
1. What is the max...
ad14 always says "wait a monent" when opened. I have uninstalled and deleted Altium related folders and registry, and reinstalled various AD versions, but nothing works. How can I solve this problem?...
When doing hardware projects, there may be dozens or even hundreds of chips to choose from to complete a function, but we don’t know in advance which chip is the most suitable in terms of cost and per...
According to foreign media reports, Ford Motor Company has applied for a patent with the U.S. Patent and Trademark Office (USPTO) for a tire pressure notification system that may be used in future ...[Details]
Host part program of multi-machine communication /* multi_m.c */ /* Host part of multi-machine communication */ #ifndef __MULTI_M_C__ #define __MULTI_M_C__ #include AT89X51.H #include STRING.H...[Details]
The data says that when the flyback topology circuit is in continuous operation, Vo=Vi*(D/1-D)*(Ns/Np) should be satisfied, and its output voltage has nothing to do with the size of the load. The ...[Details]
Radio detection and ranging (RA-DAR) systems, now called radar systems, have become a must-have for both military and civilian applications. There are numerous radar designs for different application...[Details]
SMIC Tianjin Company applied to import the world's largest single-unit 8-inch production line; SMIC signed a listing guidance agreement; BAIC-Imagination and other joint ventures established an autom...[Details]
Xiaomi announced that the Xiaomi Mi 12 series will be the first to launch the new generation of Snapdragon 8 mobile platform. The phone will definitely be released before the end of the year, b...[Details]
Sometimes, we may encounter situations where we need to define certain arrays in a fixed area or specify the starting address of a function.
For example, there are two files, main.c and sendpc.c....[Details]
The weighing sensor is the most critical component in the scale. It plays the role of converting gravity into electrical signals. If the weighing sensor fails, it will cause errors in the conversion,...[Details]
Working principle of single touch mode light switch
The touch mode light switch introduced here can turn on and off the light with only one touch electrode sheet. Like the touch mode light switch,...[Details]
According to foreign media reports, at the Las Vegas Modified Auto Parts Show (SEMA) held from November 5 to 8, OPTIMA Batteries, a leading brand under CLARIOS, launched its new OPTIMA ORANGETOP QH...[Details]
According to a report by the Nikkei on November 14, in addition to France and the United Kingdom, China and India have also begun to make it clear that they will switch from gasoline and diesel veh...[Details]
If you ask anyone if he knows CPU, I think his answer will be yes. But if you ask him if he knows ARM and X86 architectures? What is the difference between the two? Most people will be confused. To...[Details]
The Sony Play Station 5 Chinese version press conference has ended. Before we start summarizing the content of this press conference, let's take a look at the highlights of the previously released PS...[Details]
The core of Industry 4.0 is intelligent manufacturing. In the field of intelligent manufacturing, industrial AI quality inspection is running fast. Smart manufacturing needs to realize networked sm...[Details]
Do you want to achieve local consumption of renewable energy? Do you want to improve your energy efficiency?
Are you worried about the high energy costs? Don't worry! We have a super tool that...[Details]