The IDT2309B is a high-speed phase-lock loop (PLL) clock buffer,
designed to address high-speed clock distribution applications. The zero
delay is achieved by aligning the phase between the incoming clock and
the output clock, operable within the range of 10 to 133MHz.
The IDT2309B is a 16-pin version of the IDT2305B. The IDT2309B
accepts one reference input, and drives two banks of four low skew clocks.
The -1H version of this device operates at up to 133MHz frequency and
has higher drive than the -1 device. All parts have on-chip PLLs which lock
to an input clock on the REF pin. The PLL feedback is on-chip and is
obtained from the CLKOUT pad. In the absence of an input clock, the
IDT2309B enters power down, and the outputs are tri-stated. In this mode,
the device will draw less than 25µA.
The IDT2309B is characterized for both Industrial and Commercial
operation.
FUNCTIONAL BLOCK DIAGRAM
16
CLKOUT
1
REF
PLL
2
CLKA1
3
CLKA2
14
CLKA3
15
CLKA4
S2
S1
8
9
Control
Logic
6
CLKB1
7
CLKB2
10
CLKB3
11
CLKB4
The IDT logo is a registered trademark of Integrated Device Technology, Inc.
COMMERCIAL AND INDUSTRIAL TEMPERATURE RANGES
1
c
2012
Integrated Device Technology, Inc.
AUGUST 2012
DSC 6996/3
IDT2309B
3.3V ZERO DELAY CLOCK BUFFER
COMMERCIAL AND INDUSTRIAL TEMPERATURE RANGES
PIN CONFIGURATION
REF
CLKA1
CLKA2
V
DD
GND
CLKB1
CLKB2
S2
1
2
3
4
5
6
7
8
16
15
14
13
12
11
10
9
SOIC/ TSSOP
TOP VIEW
ABSOLUTE MAXIMUM RATINGS
(1)
Symbol
Rating
Supply Voltage Range
Input Voltage Range (REF)
Input Voltage Range
(except REF)
I
IK
(V
I
< 0)
I
O
(V
O
= 0 to V
DD
)
V
DD
or GND
T
A
= 55°C
(in still air)
(3)
T
STG
Operating
Temperature
Operating
Temperature
Storage Temperature Range
Commercial Temperature
Range
Industrial Temperature
Range
-40 to +85
°C
–65 to +150
0 to +70
°C
°C
Input Clamp Current
Continuous Output Current
Continuous Current
Maximum Power Dissipation
Max.
–0.5 to +4.6
–0.5 to +5.5
–0.5 to
V
DD
+0.5
–50
±50
±100
0.7
mA
mA
mA
W
Unit
V
V
V
CLKOUT
CLKA4
CLKA3
V
DD
GND
CLKB4
CLKB3
S1
V
DD
V
I (2)
V
I
APPLICATIONS:
•
•
•
•
•
SDRAM
Telecom
Datacom
PC Motherboards/Workstations
Critical Path Delay Designs
NOTES:
1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause
permanent damage to the device. This is a stress rating only and functional operation
of the device at these or any other conditions above those indicated in the operational
sections of this specification is not implied. Exposure to absolute maximum rating
conditions for extended periods may affect reliability.
2. The input and output negative-voltage ratings may be exceeded if the input and output
clamp-current ratings are observed.
3. The maximum package power dissipation is calculated using a junction temperature
of 150°C and a board trace length of 750 mils.
PIN DESCRIPTION
Pin Name
REF
CLKA1
(1)
CLKA2
V
DD
GND
CLKB1
(1)
CLKB2
(1)
S2
(2)
S1
(2)
CLKB3
(1)
CLKB4
(1)
(1)
Pin Number
1
2
3
4, 13
5, 12
6
7
8
9
10
11
14
15
16
Type
IN
Out
Out
PWR
GND
Out
Out
IN
IN
Out
Out
Out
Out
Out
Functional Description
Input reference clock, 5 Volt tolerant input
Output clock for bank A
Output clock for bank A
3.3V Supply
Ground
Output clock for bank B
Output clock for bank B
Select input Bit 2
Select input Bit 1
Output clock for bank B
Output clock for bank B
Output clock for bank A
Output clock for bank A
Output clock, internal feedback on this pin
CLKA3
(1)
CLKA4
(1)
CLKOUT
(1)
NOTES:
1. Weak pull down on all outputs.
2. Weak pull ups on these inputs.
2
IDT2309B
3.3V ZERO DELAY CLOCK BUFFER
COMMERCIAL AND INDUSTRIAL TEMPERATURE RANGES
FUNCTION TABLE
(1)
S2
L
L
H
H
S1
L
H
L
H
CLKA
Tri-State
Driven
Driven
Driven
CLKB
Tri-State
Tri-State
Driven
Driven
CLKOUT
(2)
Driven
Driven
Driven
Driven
Output Source
PLL
PLL
REF
PLL
PLL Shut Down
N
N
Y
N
NOTES:
1. H = HIGH Voltage Level.
L = LOW Voltage Level
2. This output is driven and has an internal feedback for the PLL. The load on this ouput can be adjusted to change the skew between the REF and the output.
DC ELECTRICAL CHARACTERISTICS - COMMERCIAL
Symbol
V
IL
V
IH
I
IL
I
IH
V
OL
V
OH
I
DD_PD
I
DD
Parameter
Input LOW Voltage Level
Input HIGH Voltage Level
Input LOW Current
Input HIGH Current
Output LOW Voltage
Output HIGH Voltage
Power Down Current
Supply Current
V
IN
= 0V
V
IN
= V
DD
Standard Drive
High Drive
Standard Drive
High Drive
REF = 0MHz (S2 = S1 = H)
Unloaded Outputs at 66.66MHz, SEL inputs at V
DD
or GND
I
OL
= 8mA
I
OL
= 12mA (-1H)
I
OH
= -8mA
I
OH
= -12mA (-1H)
—
—
12
32
µA
mA
2.4
—
V
Conditions
Min.
—
2
—
—
—
Max.
0.8
—
50
100
0.4
Unit
V
V
µA
µA
V
OPERATING CONDITIONS - COMMERCIAL
Symbol
V
DD
T
A
C
L
C
IN
Supply Voltage
Operating Temperature (Ambient Temperature)
Load Capacitance < 100MHz
Load Capacitance 100MHz - 133MHz
Input Capacitance
(1,2)
Parameter
Min.
3
0
—
—
—
Max.
3.6
70
30
10
7
Unit
V
°
C
pF
pF
SWITCHING CHARACTERISTICS (2309B-1) - COMMERCIAL
Symbol
t
1
Parameter
Output Frequency
Duty Cycle = t
2
÷
t
1
t
3
t
4
t
5
t
6A
t
6B
t
7
t
J
t
LOCK
Rise Time
Fall Time
Output to Output Skew
10pF Load
30pF Load
Measured at 1.4V, F
OUT
= 66.66MHz
Measured between 0.8V and 2V
Measured between 0.8V and 2V
All outputs equally loaded
Conditions
Min.
10
10
40
—
—
—
—
1
—
—
—
Typ.
—
—
50
—
—
—
0
5
0
50
—
Max.
133
100
60
2.5
2.5
250
±350
8.7
700
175
1
Unit
MHz
%
ns
ns
ps
ps
ns
ps
ps
ms
Delay, REF Rising Edge to CLKOUT Rising Edge
(2)
Measured at V
DD
/2
Delay, REF Rising Edge to CLKOUT Rising Edge
(2)
Measured at V
DD
/2 in PLL bypass mode (IDT2309B only)
Device-to-Device Skew
Cycle-to-Cycle Jitter
PLL Lock Time
Measured at V
DD
/2 on the CLKOUT pins of devices
Measured at 66.66MHz, loaded outputs
Stable power supply, valid clock presented on REF pin
NOTES:
1. REF Input has a threshold voltage of V
DD
/2.
2. All parameters specified with loaded outputs.
3
IDT2309B
3.3V ZERO DELAY CLOCK BUFFER
COMMERCIAL AND INDUSTRIAL TEMPERATURE RANGES
(1,2)
SWITCHING CHARACTERISTICS (2309B-1H) - COMMERCIAL
Symbol
t
1
Parameter
Output Frequency
Duty Cycle = t
2
÷
t
1
Duty Cycle = t
2
÷
t
1
t
3
t
4
t
5
t
6A
t
6B
t
7
t
8
t
J
t
LOCK
Rise Time
Fall Time
Output to Output Skew
Delay, REF Rising Edge to CLKOUT Rising Edge
Delay, REF Rising Edge to CLKOUT Rising Edge
Device-to-Device Skew
Output Slew Rate
Cycle-to-Cycle Jitter
PLL Lock Time
10pF Load
30pF Load
Measured at 1.4V, F
OUT
= 66.66MHz
Measured at 1.4V, F
OUT
<50MHz
Measured between 0.8V and 2V
Measured between 0.8V and 2V
All outputs equally loaded
Measured at V
DD
/2
Conditions
Min.
10
10
40
45
—
—
—
—
1
—
1
—
—
Typ.
—
—
50
50
—
—
—
0
5
0
—
—
—
Max.
133
100
60
55
1.5
1.5
250
±350
8.7
700
—
175
1
Unit
MHz
%
%
ns
ns
ps
ps
ns
ps
V/ns
ps
ms
Measured at V
DD
/2 in PLL bypass mode (IDT2309 only)
Measured at V
DD
/2 on the CLKOUT pins of devices
Measured between 0.8V and 2V using Test Circuit 2
Measured at 66.66MHz, loaded outputs
Stable power supply, valid clock presented on REF pin
NOTES:
1. REF Input has a threshold voltage of V
DD
/2.
2. All parameters specified with loaded outputs.
DC ELECTRICAL CHARACTERISTICS - INDUSTRIAL
Symbol
V
IL
V
IH
I
IL
I
IH
V
OL
V
OH
I
DD_PD
I
DD
Parameter
Input LOW Voltage Level
Input HIGH Voltage Level
Input LOW Current
Input HIGH Current
Output LOW Voltage
Output HIGH Voltage
Power Down Current
Supply Current
V
IN
= 0V
V
IN
= V
DD
Standard Drive
High Drive
Standard Drive
High Drive
REF = 0MHz (S2 = S1 = H)
Unloaded Outputs at 66.66MHz, SEL inputs at V
DD
or GND
I
OL
= 8mA
I
OL
= 12mA (-1H)
I
OH
= -8mA
I
OH
= -12mA (-1H)
—
—
25
35
µA
mA
2.4
—
V
Conditions
Min.
—
2
—
—
—
Max.
0.8
—
50
100
0.4
Unit
V
V
µA
µA
V
OPERATING CONDITIONS - INDUSTRIAL
Symbol
V
DD
T
A
C
L
C
IN
Supply Voltage
Operating Temperature (Ambient Temperature)
Load Capacitance < 100MHz
Load Capacitance 100MHz - 133MHz
Input Capacitance
Parameter
Min.
3
-40
—
—
—
Max.
3.6
+85
30
10
7
pF
Unit
V
°
C
pF
4
IDT2309B
3.3V ZERO DELAY CLOCK BUFFER
COMMERCIAL AND INDUSTRIAL TEMPERATURE RANGES
(1,2)
SWITCHING CHARACTERISTICS (2309B-1) - INDUSTRIAL
Symbol
t
1
Parameter
Output Frequency
Duty Cycle = t
2
÷
t
1
t
3
t
4
t
5
t
6A
t
6B
t
7
t
J
t
LOCK
Rise Time
Fall Time
Output to Output Skew
Delay, REF Rising Edge to CLKOUT Rising Edge
Delay, REF Rising Edge to CLKOUT Rising Edge
Device-to-Device Skew
Cycle-to-Cycle Jitter
PLL Lock Time
10pF Load
30pF Load
Conditions
Min.
10
10
40
—
—
—
—
1
—
—
—
Typ.
—
—
50
—
—
—
0
5
0
50
—
Max.
133
100
60
2.5
2.5
250
±350
8.7
700
175
1
Unit
MHz
%
ns
ns
ps
ps
ns
ps
ps
ms
Measured at 1.4V, F
OUT
= 66.66MHz
Measured between 0.8V and 2V
Measured between 0.8V and 2V
All outputs equally loaded
Measured at V
DD
/2
Measured at V
DD
/2 in PLL bypass mode (IDT2309B only)
Measured at V
DD
/2 on the CLKOUT pins of devices
Measured at 66.66MHz, loaded outputs
Stable power supply, valid clock presented on REF pin
NOTES:
1. REF Input has a threshold voltage of V
DD
/2.
2. All parameters specified with loaded outputs.
SWITCHING CHARACTERISTICS (2309B-1H) - INDUSTRIAL
Symbol
t
1
Parameter
Output Frequency
Duty Cycle = t
2
÷
t
1
Duty Cycle = t
2
÷
t
1
t
3
t
4
t
5
t
6A
t
6B
t
7
t
8
t
J
t
LOCK
Rise Time
Fall Time
Output to Output Skew
Delay, REF Rising Edge to CLKOUT Rising Edge
Delay, REF Rising Edge to CLKOUT Rising Edge
Device-to-Device Skew
Output Slew Rate
Cycle-to-Cycle Jitter
PLL Lock Time
10pF Load
30pF Load
Measured at 1.4V, F
OUT
= 66.66MHz
Measured at 1.4V, F
OUT
<50MHz
Measured between 0.8V and 2V
Measured between 0.8V and 2V
All outputs equally loaded
Measured at V
DD
/2
Conditions
(1,2)
Min.
10
10
40
45
—
—
—
—
1
—
1
—
—
Typ.
—
—
50
50
—
—
—
0
5
0
—
—
—
Max.
133
100
60
55
1.5
1.5
250
±350
8.7
700
—
175
1
Unit
MHz
%
%
ns
ns
ps
ps
ns
ps
V/ns
ps
ms
Measured at V
DD
/2 in PLL bypass mode (IDT2309B only)
Measured at V
DD
/2 on the CLKOUT pins of devices
Measured between 0.8V and 2V using Test Circuit 2
Measured at 66.66MHz, loaded outputs
Stable power supply, valid clock presented on REF pin
PCB (Printed Circuit Board), Chinese name is printed circuit board, also known as printed circuit board, is an important electronic component, the support of electronic components, and the carrier of ...
Snek is a small embedded language that targets processors with only a few kB of flash and ram. Think of something that ran BASIC a few years ago and you'll get the idea. These processors were too smal...
[i=s]This post was last edited by Fillmore on 2020-5-29 18:35[/i]1. Environment Construction
Hardware: WildFire STM32F429 V1 + EC20
Software: RT-THREAD V4.0.1 + MDK 5.26 + STM32 CUBEMX
RT-Thread softw...
1. When multiple clock signals of different frequencies are required in the system, programmable clock chip is preferred;2. When a single clock signal is used, crystal clock circuit is selected;3. Whe...
Embedded software development requires extensive knowledge and understanding of the target architecture and its use. There are a series of steps required to transform an embedded system from concept t...
It uses electronic methods to achieve inertia-free beam scanning, so it is also called electronically scanned array (ESA). Its beam direction is controllable, scanning is flexible, and the gain can be...
According to Korean media reports, market research firm UBIResearch predicted in a report on October 28 that shipments of foldable OLED panels will reach 8.9 million units in 2021. By 2025, shipments...[Details]
Translated from——spectrum When we saw the wonderful scene in the movie "I, Robot" shot by Will Smith in 2004, where he drove a very sci-fi Audi RSQ sports car to fight against robots, it still clea...[Details]
At present, most mainstream CPUs support floating-point units or auxiliary units with floating-point functions, such as the SPE APU of PowerPC e500. On such machines, floating-point operations are ge...[Details]
Driving CFL ballast circuit Designers use the ballast IC in the CFL to heat the filament, light the bulb, and provide current for the lamp. Manufacturers produce these ICs in large quantities a...[Details]
1. Internal Block Diagram The dual Σ-Δ ADC with auxiliary DAC recently launched by AD is a complete 15-bit CMOS ADC. It has high sampling rate, low power consumption, and the input end also has sign...[Details]
Before the 1980s, my country's public lighting equipment was generally in the traditional power grid and manual management mode. The operation status of street lamps was mainly achieved through line ...[Details]
What are the color codes for Ford's wiring harness wires? When working on your car's electrical system, it's important to use the correct wires. Automotive wiring harnesses assemble cables, connect...[Details]
MOSEET gate drive circuit
The MOSFET drive circuit uses a voltage regulator tube VD1 (UDRM=8.3V) added to the gate to give it a constant drive voltage, which can ensure that the MOSFET tube can alw...[Details]
The circuit drives a high-power white LED (WLED) and turns off the LED when the temperature is too high and the thermistor fails in an open or short circuit. The life of any IC will be shortened...[Details]
Infineon Technologies Launches 650 V CoolSiCTM MOSFET in D2PAK Package to Further Reduce Application Losses and Improve Reliability
Driven by megatrends such as digitalization, urba...[Details]
Technical Description: Based on the self-developed full-link voice interaction technology, the Spichi intelligent car networking solution focuses on human-machine dialogue interaction in vehicle...[Details]
According to foreign media reports, although 3D printing is generally considered an important new technology in the automotive industry, its influence has been limited so far. Volkswagen and HP recen...[Details]
This year, the promotion of policies and the activity of new energy vehicles have significantly increased the scale and penetration rate of the smart car market. According to Roland Berger data, th...[Details]
1. Background
Modbus and Profibus are two commonly used communication protocols in industrial control systems. They play an important role in the field of automation. Modbus is a serial commun...[Details]