D ts e t
aa h e
R c e t r lc r nc
o h se Ee to is
Ma u a t r dCo o e t
n fc u e
mp n n s
R c e tr b a d d c mp n ns ae
o h se rn e
o oet r
ma ua trd u ig ete dewaes
n fcue sn i r i/ fr
h
p rh s d f m te oiia s p l r
uc a e r
o h r n l u pi s
g
e
o R c e tr waes rce td f m
r o h se
fr e rae r
o
te oiia I. Al rce t n ae
h
r nl P
g
l e rai s r
o
d n wi tea p o a o teOC
o e t h p rv l f h
h
M.
P r aetse u igoiia fcoy
at r e td sn r n la tr
s
g
ts p o rmso R c e tr e eo e
e t rga
r o h se d v lp d
ts s lt n t g aa te p o u t
e t oui s o u rne
o
rd c
me t o e c e teOC d t s e t
es r x e d h
M aa h e.
Qu l yOv riw
ai
t
e ve
• IO- 0 1
S 90
•A 92 cr ct n
S 1 0 et ai
i
o
• Qu l e Ma ua trr Ls (
ai d
n fcues it QML MI- R -
) LP F
385
53
•C a sQ Mitr
ls
lay
i
•C a sVS a eL v l
ls
p c ee
• Qu l e S p l r Ls o D sr uos( L )
ai d u pi s it f it b tr QS D
e
i
•R c e trsacic l u pir oD A a d
o h se i
r ia s p l t L n
t
e
me t aln u t a dD A sa d r s
es lid sr n L tn ad .
y
R c e tr lcrnc , L i c mmi e t
o h se Ee t is L C s o
o
tdo
t
s p ligp o u t ta s t f c so r x e t-
u pyn rd cs h t ai y u tme e p ca
s
t n fr u lya daee u loto eoiial
i s o q ai n r q a t h s r n l
o
t
g
y
s p l db id sr ma ua trr.
u pi
e yn ut
y n fcues
T eoiia ma ua trr d ts e t c o a yn ti d c me t e e t tep r r n e
h r n l n fcue’ aa h e a c mp n ig hs o u n r cs h ef ma c
g
s
o
a ds e ic t n o teR c e tr n fcue v rino ti d vc . o h se Ee t n
n p c ai s f h o h se ma ua trd eso f hs e ie R c e tr lcr -
o
o
isg aa te tep r r n eo i s mio d co p o u t t teoiia OE s e ic -
c u rne s h ef ma c ft e c n u tr rd cs o h r n l M p c a
o
s
g
t n .T pc lv le aefr eee c p r o e o l. eti mii m o ma i m rt g
i s ‘y ia’ au s r o rfrn e up s s ny C r n nmu
o
a
r xmu ai s
n
ma b b s do p o u t h rceiain d sg , i lt n o s mpetsig
y e a e n rd c c aa tr t , e in smuai , r a l e t .
z o
o
n
© 2 1 R cetr l t n s LC Al i t R sre 0 1 2 1
0 3 ohs E cr i , L . lRg s eevd 7 1 0 3
e e oc
h
T l r m r, l s v iw wrcl . m
o e n oe p ae it w . e c o
a
e
s
o ec
a
FEATURES
Low Supply Current: 4 A/Amplifier max
Single-Supply Operation: 2.7 V to 12 V
Wide Input Voltage Range
Rail-to-Rail Output Swing
Low Offset Voltage: 1.5 mV
No Phase Reversal
APPLICATIONS
Comparator
Battery Powered Instrumentation
Safety Monitoring
Remote Sensors
Low Voltage Strain Gage Amplifiers
Ultralow Power, Rail-to-Rail Output
Operational Amplifiers
OP181/OP281/OP481
PIN CONFIGURATIONS
8-Lead SO
(S Suffix)
NULL
–IN A
+IN A
V–
1
8
NC
V+
OUT A
NULL
8-Lead Epoxy DIP
(P Suffix)
NULL 1
–IN A 2
+IN A 3
V– 4
8 NC
OP181
4
5
OP181
7 V+
6 OUT A
5 NULL
NC = NO CONNECT
NC = NO CONNECT
8-Lead SO
(S Suffix)
OUT A
–IN A
+IN A
V–
1
8
V+
OUT B
–IN B
+IN B
8-Lead Epoxy DIP
(P Suffix)
OUT A 1
–IN A 2
+IN A 3
V– 4
OP281
8 V+
7 OUT B
6 –IN B
5 +IN B
OP281
4
5
GENERAL DESCRIPTION
The OP181, OP281 and OP481 are single, dual and quad
ultralow power, single-supply amplifiers featuring rail-to-rail
outputs. All operate from supplies as low as 2.0 V and are
specified at +3 V and +5 V single supply as well as
±
5 V dual
supplies.
Fabricated on Analog Devices’ CBCMOS process, the OP181
family features a precision bipolar input and an output that
swings to within millivolts of the supplies and continues to sink
or source current all the way to the supplies.
Applications for these amplifiers include safety monitoring,
portable equipment, battery and power supply control, and
signal conditioning and interface for transducers in very low
power systems.
The output’s ability to swing rail-to-rail and not increase supply
current, when the output is driven to a supply voltage, enables
the OP181 family to be used as comparators in very low power
systems. This is enhanced by their fast saturation recovery time.
Propagation delays are 250
µs.
The OP181/OP281/OP481 are specified over the extended
industrial (–40°C to +85°C) temperature range. The OP181,
single, and OP281, dual, amplifiers are available in 8-pin plastic
DIPs and SO surface mount packages. The OP281 is also
available in 8-lead TSSOP. The OP481 quad is available in 14-
pin DIPs, narrow 14-pin SO and TSSOP packages.
8-Lead TSSOP
(RU Suffix)
1
4
8
5
OP281
14-Lead Epoxy DIP
(P Suffix)
14-Lead
Narrow-Body SO
(S Suffix)
1
14
OUT A 1
–IN A 2
+IN A 3
V+ 4
+IN B 5
–IN B 6
OUT B 7
14 OUT D
13 –IN D
12 +IN D
OP481
OP481
11 V–
10 +IN C
9 –IN C
8 OUT C
7
8
14-Lead TSSOP
(RU Suffix)
1
14
OP481
NOTE: PIN ORIENTATION IS EQUIVALENT FOR
EACH PACKAGE VARIATION
7
8
REV. 0
Information furnished by Analog Devices is believed to be accurate and
reliable. However, no responsibility is assumed by Analog Devices for its
use, nor for any infringements of patents or other rights of third parties
which may result from its use. No license is granted by implication or
otherwise under any patent or patent rights of Analog Devices.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
Tel: 617/329-4700
World Wide Web Site: http://www.analog.com
Fax: 617/326-8703
© Analog Devices, Inc., 1996
OP181/OP281/OP481–SPECIFICATIONS
ELECTRICAL SPECIFICATIONS
(@ V = +3.0 V, V
S
CM
= 1.5 V, T
A
= +25 C unless otherwise noted)
Min
Typ
Max
1.5
2.5
10
7
2
Units
mV
mV
nA
nA
V
dB
V/mV
V/mV
µV/°C
pA/°C
pA/°C
Parameter
INPUT CHARACTERISTICS
Offset Voltage
Input Bias Current
Input Offset Current
Input Voltage Range
Common-Mode Rejection Ratio
Large Signal Voltage Gain
Offset Voltage Drift
Bias Current Drift
Offset Current Drift
OUTPUT CHARACTERISTICS
Output Voltage High
Output Voltage Low
Short Circuit Limit
POWER SUPPLY
Power Supply Rejection Ratio
Supply Current/Amplifier
DYNAMIC PERFORMANCE
Slew Rate
Turn On Time
Turn On Time
Saturation Recovery Time
Gain Bandwidth Product
Phase Margin
NOISE PERFORMANCE
Voltage Noise
Voltage Noise Density
Current Noise Density
NOTES
1
V
OS
is tested under no load condition.
Specifications subject to change without notice.
Symbol
V
OS
I
B
I
OS
CMRR
A
VO
∆V
OS
/∆T
∆I
B
/∆T
∆I
OS
/∆T
V
OH
V
OL
I
SC
PSRR
I
SY
Conditions
Note 1
–40°C
≤
T
A
≤
+85°C
–40°C
≤
T
A
≤
+85°C
–40°C
≤
T
A
≤
+85°C
3
0.1
0
V
CM
= 0 V to 2.0 V,
–40°C
≤
T
A
≤
+85°C
R
L
= 1 MΩ, V
O
= 0.3 V to 2.7 V
–40°C
≤
T
A
≤
+85°C
65
5
2
95
13
10
20
2
R
L
= 100 kΩ to GND,
–40°C
≤
T
A
≤
+85°C
R
L
= 100 kΩ to V+,
–40°C
≤
T
A
≤
+85°C
2.925
2.96
25
±
1.1
75
V
mV
mA
V
S
= 2.7 V to 12 V
–40°C
≤
T
A
≤
+85°C
V
O
= 0 V
–40°C
≤
T
A
≤
+85°C
R
L
= 100 kΩ, C
L
= 50 pF
A
V
= 1, V
O
= 1
A
V
= 20, V
O
= 1
76
95
3
4
5
dB
µA
µA
V/ms
µs
µs
µs
kHz
Degrees
µV
p-p
nV/√Hz
pA/√Hz
SR
GBP
φo
e
n
p-p
e
n
i
n
0.1 Hz to 10 Hz
f = 1 kHz
25
40
50
65
95
70
10
75
<1
–2–
REV. 0
OP181/OP281/OP481
ELECTRICAL SPECIFICATIONS
(@ V = +5.0 V, V
S
CM
= 2.5 V, T
A
= +25 C unless otherwise noted
1
)
Min
Typ
0.1
3
0.1
0
Max
1.5
2.5
10
7
4
Units
mV
mV
nA
nA
V
dB
V/mV
V/mV
µV/°C
pA/°C
pA/°C
Parameter
INPUT CHARACTERISTICS
Offset Voltage
Input Bias Current
Input Offset Current
Input Voltage Range
Common-Mode Rejection Ratio
Large Signal Voltage Gain
Offset Voltage Drift
Bias Current Drift
Offset Current Drift
OUTPUT CHARACTERISTICS
Output Voltage High
Output Voltage Low
Short Circuit Limit
POWER SUPPLY
Power Supply Rejection Ratio
Supply Current/Amplifier
DYNAMIC PERFORMANCE
Slew Rate
Saturation Recovery Time
Gain Bandwidth Product
Phase Margin
NOISE PERFORMANCE
Voltage Noise
Voltage Noise Density
Current Noise Density
NOTES
1
V
OS
is tested under a no load condition.
Specifications subject to change without notice.
Symbol
V
OS
I
B
I
OS
CMRR
A
VO
∆V
OS
/∆T
∆I
B
/∆T
∆I
OS
/∆T
V
OH
V
OL
I
SC
PSRR
I
SY
Conditions
Note 1
–40°C
≤
T
A
≤
+85°C
–40°C
≤
T
A
≤
+85°C
–40°C
≤
T
A
≤
+85°C
V
CM
= 0 V to 4.0 V,
–40°C
≤
T
A
≤
+85°C
R
L
= 1 MΩ , V
O
= 0.5 V to 4.5 V
–40°C
≤
T
A
≤
+85°C
–40°C to +85°C
65
5
2
90
15
10
20
2
R
L
= 100 kΩ to GND,
–40°C
≤
T
A
≤
+85°C
R
L
= 100 kΩ to V+,
–40°C
≤
T
A
≤
+85°C
4.925
4.96
25
±
3.5
75
V
mV
mA
V
S
= 2.7 V to 12 V,
–40°C
≤
T
A
≤
+85°C
V
O
= 0 V
–40°C
≤
T
A
≤
+85°C
R
L
= 100 kΩ, C
L
= 50 pF
76
95
3.2
4
5
dB
µA
µA
V/ms
µs
kHz
Degrees
µV
p-p
nV/√Hz
pA/√Hz
SR
GBP
φo
e
n
p-p
e
n
i
n
27
120
100
74
10
75
<1
0.1 Hz to 10 Hz
f = 1 kHz
REV. 0
–3–
OP181/OP281/OP481–SPECIFICATIONS
ELECTRICAL SPECIFICATIONS
(@ V =
±5
V, T = +25 C unless otherwise noted)
S
A
Parameter
INPUT CHARACTERISTICS
Offset Voltage
Input Bias Current
Input Offset Current
Input Voltage Range
Common-Mode Rejection
Large Signal Voltage Gain
Offset Voltage Drift
Bias Current Drift
Offset Current Drift
OUTPUT CHARACTERISTICS
Output Voltage Swing
Short Circuit Limit
POWER SUPPLY
Power Supply Rejection Ratio
Supply Current/Amplifier
DYNAMIC PERFORMANCE
Slew Rate
Gain Bandwidth Product
Phase Margin
NOISE PERFORMANCE
Voltage Noise
Voltage Noise Density
Voltage Noise Density
Current Noise Density
NOTES
1
V
OS
is tested under no load condition.
Specifications subject to change without notice.
Symbol
V
OS
I
B
I
OS
CMRR
A
VO
∆V
OS
/∆T
∆I
B
/∆T
∆I
OS
/∆T
V
O
I
SC
PSRR
I
SY
Conditions
Note 1
–40°C
≤
T
A
≤
+85°C
–40°C
≤
T
A
≤
+85°C
–40°C
≤
T
A
≤
+85°C
Min
Typ
0.1
3
0.1
Max
1.5
2.5
10
7
+4
Units
mV
mV
nA
nA
V
dB
V/mV
V/mV
µV/°C
pA/°C
pA/°C
–5
V
CM
= –5.0 V to +4.0 V,
–40°C
≤
T
A
≤
+85°C
R
L
= 1 MΩ, V
O
=
±
4.0 V,
–40°C
≤
T
A
≤
+85°C
–40°C to +85°C
65
5
2
95
13
10
20
2
R
L
= 100 kΩ to GND,
–40°C
≤
T
A
≤
+85°C
±
4.925
±
4.98
12
V
mA
V
S
=
±
1.35 V to
±
6 V,
–40°C
≤
T
A
≤
+85°C
V
O
= 0 V
–40°C
≤
T
A
≤
+85°C
R
L
= 100 kΩ, C
L
= 50 pF
76
95
3.3
5
6
dB
µA
µA
V/ms
kHz
Degrees
µV
p-p
nV/√Hz
nV/√Hz
pA/√Hz
±
SR
GBP
φo
e
n
p-p
e
n
e
n
i
n
28
105
75
10
85
75
<1
0.1 Hz to 10 Hz
f = 1 kHz
f = 10 kHz
–4–
REV. 0