• Distributes one clock input to one bank of five and one bank of
four outputs
• Separate output enable for each output bank
• Output Skew < 250ps
• Low jitter <200 ps cycle-to-cycle
• IDT2309A-1 for Standard Drive
• IDT2309A-1H for High Drive
• No external RC network required
• Operates at 3.3V V
DD
• Available in SOIC and TSSOP packages
The IDT2309A is a high-speed phase-lock loop (PLL) clock buffer,
designed to address high-speed clock distribution applications. The zero
delay is achieved by aligning the phase between the incoming clock and
the output clock, operable within the range of 10 to 133MHz.
The IDT2309A is a 16-pin version of the IDT2305A. The IDT2309A
accepts one reference input, and drives two banks of four low skew clocks.
The -1H version of this device operates up to 133MHz frequency and has
higher drive than the -1 device. All parts have on-chip PLLs which lock
to an input clock on the REF pin. The PLL feedback is on-chip and is
obtained from the CLKOUT pad. In the absence of an input clock, the
IDT2309A enters power down. In this mode, the device will draw less than
12µA for Commercial Temperature range and less than 25µA for Industrial
temperature range, and the outputs are tri-stated.
The IDT2309A is characterized for both Industrial and Commercial
operation.
FUNCTIONAL BLOCK DIAGRAM
16
CLKOUT
1
REF
PLL
2
CLKA1
3
CLKA2
14
CLKA3
15
CLKA4
S2
S1
8
9
Control
Logic
6
CLKB1
7
CLKB2
10
CLKB3
11
CLKB4
The IDT logo is a registered trademark of Integrated Device Technology, Inc.
COMMERCIAL AND INDUSTRIAL TEMPERATURE RANGES
1
c
2004 Integrated Device Technology, Inc.
JULY 2004
DSC - 6588/5
IDT2309A
3.3V ZERO DELAY CLOCK BUFFER
COMMERCIAL AND INDUSTRIAL TEMPERATURE RANGES
PIN CONFIGURATION
REF
CLKA1
CLKA2
V
DD
GND
CLKB1
CLKB2
S2
1
2
3
4
5
6
7
8
16
15
14
13
12
11
10
9
SOIC/ TSSOP
TOP VIEW
ABSOLUTE MAXIMUM RATINGS
(1)
Symbol
Rating
Supply Voltage Range
Input Voltage Range (REF)
Input Voltage Range
(except REF)
I
IK
(V
I
< 0)
I
O
(V
O
= 0 to V
DD
)
V
DD
or GND
T
A
= 55°C
(in still air)
(3)
T
STG
Operating
Temperature
Operating
Temperature
Storage Temperature Range
Commercial Temperature
Range
Industrial Temperature
Range
-40 to +85
°C
–65 to +150
0 to +70
°C
°C
Input Clamp Current
Continuous Output Current
Continuous Current
Maximum Power Dissipation
Max.
–0.5 to +4.6
–0.5 to +5.5
–0.5 to
V
DD
+0.5
–50
±50
±100
0.7
mA
mA
mA
W
Unit
V
V
V
CLKOUT
CLKA4
CLKA3
V
DD
GND
CLKB4
CLKB3
S1
V
DD
V
I (2)
V
I
APPLICATIONS:
•
•
•
•
•
SDRAM
Telecom
Datacom
PC Motherboards/Workstations
Critical Path Delay Designs
NOTES:
1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause
permanent damage to the device. This is a stress rating only and functional operation
of the device at these or any other conditions above those indicated in the operational
sections of this specification is not implied. Exposure to absolute maximum rating
conditions for extended periods may affect reliability.
2. The input and output negative-voltage ratings may be exceeded if the input and output
clamp-current ratings are observed.
3. The maximum package power dissipation is calculated using a junction temperature
of 150°C and a board trace length of 750 mils.
PIN DESCRIPTION
Pin Name
REF
(1)
CLKA1
(2)
CLKA2
V
DD
GND
CLKB1
(2)
CLKB2
(2)
S2
(3)
S1
(3)
CLKB3
(2)
CLKB4
(2)
(2)
Pin Number
1
2
3
4, 13
5, 12
6
7
8
9
10
11
14
15
16
Type
IN
Out
Out
PWR
GND
Out
Out
IN
IN
Out
Out
Out
Out
Out
Functional Description
Input reference clock, 5 Volt tolerant input
Output clock for bank A
Output clock for bank A
3.3V Supply
Ground
Output clock for bank B
Output clock for bank B
Select input Bit 2
Select input Bit 1
Output clock for bank B
Output clock for bank B
Output clock for bank A
Output clock for bank A
Output clock, internal feedback on this pin
CLKA3
(2)
CLKA4
(2)
CLKOUT
(2)
NOTES:
1. Weak pull down.
2. Weak pull down on all outputs.
3. Weak pull ups on these inputs.
2
IDT2309A
3.3V ZERO DELAY CLOCK BUFFER
COMMERCIAL AND INDUSTRIAL TEMPERATURE RANGES
FUNCTION TABLE
(1)
S2
L
L
H
H
S1
L
H
L
H
CLKA
Tri-State
Driven
Driven
Driven
CLKB
Tri-State
Tri-State
Driven
Driven
CLKOUT
(2)
Driven
Driven
Driven
Driven
Output Source
PLL
PLL
REF
PLL
PLL Shut Down
N
N
Y
N
NOTES:
1. H = HIGH Voltage Level.
L = LOW Voltage Level
2. This output is driven and has an internal feedback for the PLL. The load on this ouput can be adjusted to change the skew between the REF and the output.
DC ELECTRICAL CHARACTERISTICS - COMMERCIAL
Symbol
V
IL
V
IH
I
IL
I
IH
V
OL
V
OH
I
DD_PD
I
DD
Parameter
Input LOW Voltage Level
Input HIGH Voltage Level
Input LOW Current
Input HIGH Current
Output LOW Voltage
Output HIGH Voltage
Power Down Current
Supply Current
V
IN
= 0V
V
IN
= V
DD
Standard Drive
High Drive
Standard Drive
High Drive
REF = 0MHz (S2 = S1 = H)
Unloaded Outputs at 66.66MHz, SEL inputs at V
DD
or GND
I
OL
= 8mA
I
OL
= 12mA (-1H)
I
OH
= -8mA
I
OH
= -12mA (-1H)
—
—
12
32
µA
mA
2.4
—
V
Conditions
Min.
—
2
—
—
—
Max.
0.8
—
50
100
0.4
Unit
V
V
µA
µA
V
OPERATING CONDITIONS - COMMERCIAL
Symbol
V
DD
T
A
C
L
C
IN
Supply Voltage
Operating Temperature (Ambient Temperature)
Load Capacitance < 100MHz
Load Capacitance 100MHz - 133MHz
Input Capacitance
Parameter
Min.
3
0
—
—
—
Max.
3.6
70
30
10
7
pF
Unit
V
°
C
pF
SWITCHING CHARACTERISTICS (2309A-1) - COMMERCIAL
(1,2)
Symbol
t
1
Output Frequency
Duty Cycle = t
2
÷
t
1
t
3
t
4
t
5
t
6A
t
6B
t
7
t
J
t
LOCK
Rise Time
Fall Time
Output to Output Skew
Delay, REF Rising Edge to CLKOUT Rising Edge
(2)
Delay, REF Rising Edge to CLKOUT Rising Edge
(2)
Device-to-Device Skew
Cycle-to-Cycle Jitter
PLL Lock Time
Parameter
10pF Load
30pF Load
Measured at 1.4V, F
OUT
= 66.66MHz
Measured between 0.8V and 2V
Measured between 0.8V and 2V
All outputs equally loaded
Measured at V
DD
/2
Measured at V
DD
/2 in PLL bypass mode (IDT2309A only)
Measured at V
DD
/2 on the CLKOUT pins of devices
Measured at 66.66MHz, loaded outputs
Stable power supply, valid clock presented on REF pin
Conditions
Min.
10
10
40
—
—
—
—
1
—
—
—
Typ.
—
—
50
—
—
—
0
5
0
—
—
Max.
133
100
60
2.5
2.5
250
±350
8.7
700
200
1
%
ns
ns
ps
ps
ns
ps
ps
ms
Unit
MHz
NOTES:
1. REF Input has a threshold voltage of V
DD
/2.
2. All parameters specified with loaded outputs.
3
IDT2309A
3.3V ZERO DELAY CLOCK BUFFER
COMMERCIAL AND INDUSTRIAL TEMPERATURE RANGES
SWITCHING CHARACTERISTICS (2309A-1H) - COMMERCIAL
(1,2)
Symbol
t
1
Output Frequency
Duty Cycle = t
2
÷
t
1
Duty Cycle = t
2
÷
t
1
t
3
t
4
t
5
t
6A
t
6B
t
7
t
8
t
J
t
LOCK
Rise Time
Fall Time
Output to Output Skew
Delay, REF Rising Edge to CLKOUT Rising Edge
Delay, REF Rising Edge to CLKOUT Rising Edge
Device-to-Device Skew
Output Slew Rate
Cycle-to-Cycle Jitter
PLL Lock Time
Parameter
10pF Load
30pF Load
Measured at 1.4V, F
OUT
= 66.66MHz
Measured at 1.4V, F
OUT
<50MHz
Measured between 0.8V and 2V
Measured between 0.8V and 2V
All outputs equally loaded
Measured at V
DD
/2
Measured at V
DD
/2 in PLL bypass mode (IDT2309A only)
Measured at V
DD
/2 on the CLKOUT pins of devices
Measured between 0.8V and 2V using Test Circuit 2
Measured at 66.66MHz, loaded outputs
Stable power supply, valid clock presented on REF pin
Conditions
Min.
10
10
40
45
—
—
—
—
1
—
1
—
—
Typ.
—
—
50
50
—
—
—
0
5
0
—
—
—
Max.
133
100
60
55
1.5
1.5
250
±350
8.7
700
—
200
1
Unit
MHz
%
%
ns
ns
ps
ps
ns
ps
V/ns
ps
ms
NOTES:
1. REF Input has a threshold voltage of V
DD
/2.
2. All parameters specified with loaded outputs.
DC ELECTRICAL CHARACTERISTICS - INDUSTRIAL
Symbol
V
IL
V
IH
I
IL
I
IH
V
OL
V
OH
I
DD_PD
I
DD
Parameter
Input LOW Voltage Level
Input HIGH Voltage Level
Input LOW Current
Input HIGH Current
Output LOW Voltage
Output HIGH Voltage
Power Down Current
Supply Current
V
IN
= 0V
V
IN
= V
DD
Standard Drive
High Drive
Standard Drive
High Drive
REF = 0MHz (S2 = S1 = H)
Unloaded Outputs at 66.66MHz, SEL inputs at V
DD
or GND
I
OL
= 8mA
I
OL
= 12mA (-1H)
I
OH
= -8mA
I
OH
= -12mA (-1H)
—
—
25
35
µA
mA
2.4
—
V
Conditions
Min.
—
2
—
—
—
Max.
0.8
—
50
100
0.4
Unit
V
V
µA
µA
V
OPERATING CONDITIONS - INDUSTRIAL
Symbol
V
DD
T
A
C
L
C
IN
Supply Voltage
Operating Temperature (Ambient Temperature)
Load Capacitance < 100MHz
Load Capacitance 100MHz - 133MHz
Input Capacitance
Parameter
Min.
3
-40
—
—
—
Max.
3.6
+85
30
10
7
pF
Unit
V
°
C
pF
4
IDT2309A
3.3V ZERO DELAY CLOCK BUFFER
COMMERCIAL AND INDUSTRIAL TEMPERATURE RANGES
SWITCHING CHARACTERISTICS (2309A-1) - INDUSTRIAL
(1,2)
Symbol
t
1
Output Frequency
Duty Cycle = t
2
÷
t
1
t
3
t
4
t
5
t
6A
t
6B
t
7
t
J
t
LOCK
Rise Time
Fall Time
Output to Output Skew
Delay, REF Rising Edge to CLKOUT Rising Edge
Delay, REF Rising Edge to CLKOUT Rising Edge
Device-to-Device Skew
Cycle-to-Cycle Jitter
PLL Lock Time
Parameter
10pF Load
30pF Load
Measured at 1.4V, F
OUT
= 66.66MHz
Measured between 0.8V and 2V
Measured between 0.8V and 2V
All outputs equally loaded
Measured at V
DD
/2
Measured at V
DD
/2 in PLL bypass mode (IDT2309A only)
Measured at V
DD
/2 on the CLKOUT pins of devices
Measured at 66.66MHz, loaded outputs
Stable power supply, valid clock presented on REF pin
Conditions
Min.
10
10
40
—
—
—
—
1
—
—
—
Typ.
—
—
50
—
—
—
0
5
0
—
—
Max.
133
100
60
2.5
2.5
250
±350
8.7
700
200
1
%
ns
ns
ps
ps
ns
ps
ps
ms
Unit
MHz
NOTES:
1. REF Input has a threshold voltage of V
DD
/2.
2. All parameters specified with loaded outputs.
SWITCHING CHARACTERISTICS (2309A-1H) - INDUSTRIAL
(1,2)
Symbol
t
1
Output Frequency
Duty Cycle = t
2
÷
t
1
Duty Cycle = t
2
÷
t
1
t
3
t
4
t
5
t
6A
t
6B
t
7
t
8
t
J
t
LOCK
Rise Time
Fall Time
Output to Output Skew
Delay, REF Rising Edge to CLKOUT Rising Edge
Delay, REF Rising Edge to CLKOUT Rising Edge
Device-to-Device Skew
Output Slew Rate
Cycle-to-Cycle Jitter
PLL Lock Time
Parameter
10pF Load
30pF Load
Measured at 1.4V, F
OUT
= 66.66MHz
Measured at 1.4V, F
OUT
<50MHz
Measured between 0.8V and 2V
Measured between 0.8V and 2V
All outputs equally loaded
Measured at V
DD
/2
Measured at V
DD
/2 in PLL bypass mode (IDT2309A only)
Measured at V
DD
/2 on the CLKOUT pins of devices
Measured between 0.8V and 2V using Test Circuit 2
Measured at 66.66MHz, loaded outputs
Stable power supply, valid clock presented on REF pin
[i=s] This post was last edited by damiaa on 2018-11-28 10:57 [/i] [b][size=3]nRF52840 Preview Development Kit (DK) + Test[/size][/b][b][size=3]Review[/size][/b][b][size=3] 2nd Pathfinder Part[/size][...
POWER_SAVING related functions
1、osal.c 中 osal_start_system()---- osal_pwrmgr_powerconserve();
void osal_pwrmgr_powerconserve( void )
{uint16next;halIntState_t intState;// Should we even look into pow...
[i=s]This post was last edited by nich20xx on 2020-7-8 05:13[/i]1. Project Background
Toys are essential companions for children's growth and also occupy a large proportion of the current maternal and...
[i=s]This post was last edited by fengke on 2021-3-30 11:42[/i]1. Introduction to ICM20602
Six-axis sensors are widely used in today's smart wearable and positioning navigation products. The best six-...
[font=微软雅黑][size=4][color=darkorange][b]Download the latest trend report[/b][/color][/size][/font] [font=微软雅黑][b]Introduction:[/b]The global electric motor and generator market has grown steadily over...
First, the LabVIEW environment and the functions of VISA serial communication functions are introduced; secondly, the acquisition object of this article, the JCZ intelligent torque and speed sensor, i...[Details]
Wuxi Weishi Sensing Technology Co., Ltd. (hereinafter referred to as "Weishi Sensing") was established in July 2019. With MEMS chip technology as its core, it has full-stack technical strength in...[Details]
The outflow coefficient of the V-cone flowmeter is related to parameters such as the diameter ratio β and the Reynolds number Red. Sometimes it is difficult to ensure that the parameters are always w...[Details]
This article is part 2 of a 2- part series . Part 1 (see Reference 1 ) explained some typical terminology and ground planes and introduced partitioning methods. Part 2 will discuss the pros and cons ...[Details]
Abstract: Based on the ZigBee parking lot SMS car search system, the location of the vehicle in the parking lot is sent to the owner through SMS, which is convenient for the owner to quickly find ...[Details]
When using LEDs, attention should be paid to moisture and intrusion prevention standards. The IP (INTERNATIONAL PROTECTION) protection level system was drafted by IEC (INTERNATIONAL ELECTROTECHNICA...[Details]
The following introduces five example systems from L1 assisted driving to L4 autonomous driving.
Ultra low-end system
The system represents an example sensor configuration consistin...[Details]
The B or BL instruction causes the processor to transfer to the "subroutine name" to start execution. The difference between the two is that the BL instruction copies the address of its next instructi...[Details]
IIC communication protocol: A bidirectional two-wire synchronous serial bus only requires two wires to transmit information between devices on the bus. The two wires are SDA and SCL. SDA: Bidirectio...[Details]
Yesterday, at the I/O conference, Google introduced new consumer-oriented features in Android 10 Q, which will be completed and released to Pixel devices in late summer. Now, Google has launch...[Details]
On the evening of May 26, Huawei founder and CEO Ren Zhengfei accepted an exclusive interview with CCTV's "Face to Face" at Huawei headquarters. The following is the full text of the conversation: 20...[Details]
The device characteristics and indicators of the permanent magnet motor system vary greatly under high and low temperature environments, the motor model and parameters are complex, the nonlinearity...[Details]
Penso Power has added 50MW of capacity to Europe’s largest battery energy storage system, bringing the total to 150MW.
Battery storage company Penso Power has secured land rights, ...[Details]
Measurement methods and accessories selection
Optical contact angle measurement methods include sessile drop method, hanging drop method, rolling drop method, expansion/contraction method, etc.
...[Details]
Treo platform's modular architecture accelerates development of intelligent power management, sensor interface and communications solutions
The Treo platform is based on 65nm BC...[Details]