Off-line systems with auto-ranging or PFC front ends, industrial and process control,
distributed power, medical, ATE, communications, defense and aerospace.
For details on proper operation please refer to the:
Design Guide & Applications Manual for Maxi, Mini, Micro Family.
Absolute Maximum Ratings
Product Overview
These DC-DC converter modules use advanced
power processing, control and packaging
technologies to provide the performance,
flexibility, reliability and cost effectiveness of a
mature power component.
High-frequency ZCS/ZVS switching provides
high power density with low noise and
high efficiency.
Part Numbering
e.g. V375B12T300BL2
375B
Product Grade Temperatures (°C)
Grade
Operating
Storage
E
= –10 to +100 –20 to +125
C
= –20 to +100 –40 to +125
T
= –40 to +100 –40 to +125
H
= –40 to +100 –55 to +125
M
= –55 to +100 –65 to +125
B
Output Power
P
OUT
100W
100W, 150W
150W, 200W
200W
200W, 300W
200W, 300W
200W, 300W
200W, 300W
200W, 300W
200W, 300W
Pin Style
Finish
Blank:
Short
Tin/Lead
L:
Long
Tin/Lead
S:
Short ModuMate
Gold
N:
Long ModuMate
Gold
F:
Short RoHS
Gold
G:
Long RoHS
Gold
K:
Extra Long RoHS
Gold
Baseplate
Blank:
Slotted
2:
Threaded
3:
Through-hole
Product Type
V
= Standard
S
= Enhanced
efficiency
(avail.
≤12
V
OUT
only)
Output Voltage
2
= 2V
3V 3
= 3.3V
5
= 5V
8
= 8V
12
= 12V
15
= 15V
24
= 24V
28
= 28V
36
= 36V
48
= 48V
V
OUT
2V
3.3V
5V
8V
12V
15V
24V
28V
36V
48V
375V Mini Family
Page 1 of 14
Rev 9.9
05/2018
375V Input
Module Family Electrical Characteristics
Electrical characteristics apply over the full operating range of input voltage, output load (resistive) and baseplate temperature, unless otherwise specified.
All temperatures refer to the operating temperature at the center of the baseplate.
MODULE INPUT SPECIFICATIONS
Parameter
Operating input voltage
Input surge withstand
Undervoltage turn–on
Undervoltage turn–off
Overvoltage turn–off/on
Disabled input current
204.7
429.2
242.5
212.2
446.3
467.5
1.1
Min
250
Typ
375
Max
425
500
247.5
Unit
V
DC
V
DC
V
DC
V
DC
V
DC
mA
PC pin low
<100ms
Notes
MODULE OUTPUT SPECIFICATIONS
Parameter
Output voltage setpoint
Line regulation
Temperature regulation
Power sharing accuracy
Programming range
10
±0.02
±0.002
±2
Min
Typ
Max
±1
±0.20
±0.005
±5
110
Unit
%
%
% / °C
%
%
Notes
Of nominal output voltage. Nominal input; full load; 25°C
Low line to high line; full load
Over operating temperature range
10 to 100% of full load
Of nominal output voltage. For trimming below 90%
of nominal, a minimum load of 10% of maximum
rated power may be required.
Externally applied
Externally applied
Externally applied
Externally applied
Externally applied
Externally applied
Externally applied
Externally applied
Externally applied
Externally applied
+OUT to –OUT, +Sense to –OUT — Absolute Maximum Ratings
2V
3.3V
5V
8V
12V
15V
24V
28V
36V
48V
–0.5 to 3.1
–0.5 to 4.7
–0.5 to 7.0
–0.5 to 10.9
–0.5 to 16.1
–0.5 to 20.0
–0.5 to 31.7
–0.5 to 36.9
–0.5 to 47.1
–0.5 to 62.9
V
DC
V
DC
V
DC
V
DC
V
DC
V
DC
V
DC
V
DC
V
DC
V
DC
Note:
The permissible load current must never be exceeded during normal, abnormal or test conditions. For additional output related application information,
please refer to output connections on page 9.
THERMAL RESISTANCE AND CAPACITY
Parameter
Baseplate to sink; flat, greased surface
Baseplate to sink; thermal pad (P/N 20264)
Baseplate to ambient
Baseplate to ambient; 1000LFM
Thermal capacity
Min
Typ
0.16
0.14
8.0
1.9
83
Max
Unit
°C/Watt
°C/Watt
°C/Watt
°C/Watt
Watt-sec/°C
375V Mini Family
Page 2 of 14
Rev 9.9
05/2018
3075V Input
Module Family Electrical Characteristics (Cont.)
MODULE CONTROL SPECIFICATIONS
Parameter
Min
Typ
Max
Unit
Notes
Primary Side (PC = Primary Control; PR = Parallel)
PC bias voltage
current limit
PC module disable
PC module enable delay
PC module alarm
PC resistance
PR emitter amplitude
PR emitter current
PR receiver impedance
PR receiver threshold
PR drive capability
Secondary Side (SC = Secondary Control)
SC bandgap voltage
SC resistance
SC capacitance
SC module alarm
1.21
990
1.23
1000
0.033
0
1.25
1010
V
DC
Ω
µF
V
DC
With open trim; referenced to –Sense. See Fig. 7
Referenced to –Sense
0.9
5.7
150
375
2.4
500
2.5
625
2.6
12
1.0
5.9
5.50
1.5
2.3
5.75
2.1
2.6
4
6.00
3.0
2.9
7
0.5
1.1
6.1
V
DC
mA
V
DC
ms
Vavg
MΩ
Volts
mA
Ω
Volts
modules
25°C
Minimum pulse width: 20ns
Without PR buffer amplifier
UV, OV, OT, module fault. See Figs. 3 and 5
See Fig. 3, converter off or fault mode
PR load >30Ω, <30pF
PC current = 1.0mA
PC voltage = 5.5V
During normal operation
Switch must be able to sink
≥4mA.
See Fig. 2
MODULE GENERAL SPECIFICATIONS
Parameter
Remote sense (total drop)
Isolation test voltage (IN to OUT)*
Isolation test voltage (IN to base)*
Isolation test voltage (OUT to base)*
Isolation resistance
Weight (E, C, T grade)
Weight (H, M grade)
3.1
[89.3]
3.5
[99.6]
100
3000
1500
500
10
3.5
[100.3]
3.9
[110.6]
115
cURus, cTÜVus, CE
3.9
[111.3]
4.3
[121.6]
Min
Typ
Max
0.5
Unit
V
DC
V
RMS
V
RMS
V
RMS
MΩ
ounces
[grams]
ounces
[grams]
°C
See Figs. 3 and 5. Do not operate coverter >100°C.
UL60950-1, EN60950-1, CSA60950-1, IEC60950-1.
With appropriate fuse in series with the +Input
Notes
0.25V per leg (sense leads must be connected to
respective, output terminals)
Complies with reinforced insulation requirements
Complies with basic insulation requirements
Complies with operational insulation requirements
IN to OUT, IN to baseplate, OUT to baseplate
Temperature limiting
Agency approvals
* Isolation test voltage, 1 minute or less.
Note:
Specifications are subject to change without notice.
375V Mini Family
Page 3 of 14
Rev 9.9
05/2018
375V Input
MODULE-SPECIFIC OPERATING SPECIFICATIONS
2
V
OUT
, 100W (e.g. S375B2C100BL, V375B2C100BL)
Parameter
Efficiency
S375B2C100BL (enhanced efficiency)
V375B2C100BL (standard efficiency)
Ripple and noise
Output OVP setpoint
Dissipation, standby
Load regulation
Load current
Current limit
Short circuit current
Min
79.0
73.6
2.7
Typ
83.0
74.6
100
2.8
5.1
±0.02
57.5
57.5
Max
Unit
%
125
2.9
5.3
±0.3
50
70
70
mV
Volts
Watts
%
Amps
Amps
Amps
Notes
Nominal input; full load; 25°C
p-p; Nominal input; full load; 20 MHz bandwidth
25°C; recycle input voltage or PC to restart (>100ms off)
No load
No load to full load; nominal input
Output voltage 95% of nominal
Output voltage <250mV
0
51
35
3.3
V
OUT
, 150W (e.g. S375B3V3C150BL, V375B3V3C150BL)
Parameter
Efficiency
S375B3V3C150BL (enhanced efficiency)
V375B3V3C150BL (standard efficiency)
Ripple and noise
Output OVP setpoint
Dissipation, standby
Load regulation
Load current
Current limit
Short circuit current
Min
82.0
79.0
4.14
Typ
85.0
80.3
100
4.3
5.1
±0.02
53.8
54.5
Max
Unit
%
125
4.46
7.7
±0.2
45.45
63.7
63.7
mV
Volts
Watts
%
Amps
Amps
Amps
Notes
Nominal input; full load; 25°C
p-p; Nominal input; full load; 20MHz bandwidth
25°C; recycle input voltage or PC to restart (>100ms off)
No load
No load to full load; nominal input
Output voltage 95% of nominal
Output voltage <250mV
0
45.5
31.8
3.3
V
OUT
, 100W (e.g. S375B3V3C100BL, V375B3V3C100BL)
Parameter
Efficiency
S375B3V3C100BL (enhanced efficiency)
V375B3V3C100BL (standard efficiency)
Ripple and noise
Output OVP setpoint
Dissipation, standby
Load regulation
Load current
Current limit
Short circuit current
Min
82.0
79.0
4.14
Typ
85.0
80.1
108
4.3
3.8
±0.02
34.8
34.8
Max
Unit
%
135
4.46
5.5
±0.2
30.3
41
41
mV
Volts
Watts
%
Amps
Amps
Amps
Notes
Nominal input; full load; 25°C
p-p; Nominal input; full load; 20MHz bandwidth
25°C; recycle input voltage or PC to restart (>100ms off)
No load
No load to full load; nominal input
Output voltage 95% of nominal
Output voltage <250mV
0
30.9
17.4
5
V
OUT
, 200W (e.g. S375B5C200BL, V375B5C200BL)
Parameter
Efficiency
S375B5C200BL (enhanced efficiency)
V375B5C200BL (standard efficiency)
Ripple and noise
Output OVP setpoint
Dissipation, standby
Load regulation
Load current
Current limit
Short circuit current
Min
82.0
Typ
83.0
201
6.25
5.4
±0.02
46
46
251
6.47
8.1
±0.2
40
52
52
Max
Unit
%
mV
Volts
Watts
%
Amps
Amps
Amps
Notes
Nominal input; full load; 25°C
p-p; Nominal input; full load; 20MHz bandwidth
25°C; recycle input voltage or PC to restart (>100ms off)
No load
No load to full load; nominal input
Output voltage 95% of nominal
Output voltage <250mV
6.03
0
40.8
28
375V Mini Family
Page 4 of 14
Rev 9.9
05/2018
3075V Input
MODULE-SPECIFIC OPERATING SPECIFICATIONS (CONT.)
5
V
OUT
, 150W (e.g. S375B5C150BL, V375B5C150BL)
Parameter
Efficiency
S375B5C150BL (enhanced efficiency)
V375B5C150BL (standard efficiency)
Ripple and noise
Output OVP setpoint
Dissipation, standby
Load regulation
Load current
Current limit
Short circuit current
Min
83.0
82
6.03
Typ
85.0
83.4
169
6.25
5.5
±0.02
34.5
34.5
Max
Unit
%
211
6.47
6.5
±0.2
30
40.5
40.5
mV
Volts
Watts
%
Amps
Amps
Amps
Notes
Nominal input; full load; 25°C
p-p; Nominal input; full load; 20MHz bandwidth
25°C; recycle input voltage or PC to restart (>100ms off)
No load
No load to full load; nominal input
Output voltage 95% of nominal
Output voltage <250mV
0
30.6
21
8
V
OUT
, 200W (e.g. S375B8C200BL, V375B8C200BL)
Parameter
Efficiency
S375B8C200BL (enhanced efficiency)
V375B8C200BL (standard efficiency)
Ripple and noise
Output OVP setpoint
Dissipation, standby
Load regulation
Load current
Current limit
Short circuit current
Min
84.0
83
9.36
Typ
87.0
84.2
320
9.7
6
±0.02
28.8
28.8
Max
Unit
%
400
10.1
6.9
±0.2
25
33.8
33.8
mV
Volts
Watts
%
Amps
Amps
Amps
Notes
Nominal input; full load; 25°C
p-p; Nominal input; full load; 20MHz bandwidth
25°C; recycle input voltage or PC to restart (>100ms off)
No load
No load to full load; nominal input
Output voltage 95% of nominal
Output voltage <250mV
0
25.5
17.5
12
V
OUT
, 300W (e.g. S375B12C300BL, V375B12C300BL)
Parameter
Efficiency
S375B12C300BL (enhanced efficiency)
V375B12C300BL (standard efficiency)
Ripple and noise
Output OVP setpoint
Dissipation, standby
Load regulation
Load current
Current limit
Short circuit current
Min
86.0
85.5
13.7
Typ
89.0
86.7
280
14.3
6
±0.02
28.8
28.8
Max
Unit
%
360
14.9
9
±0.3
25
35
35
mV
Volts
Watts
%
Amps
Amps
Amps
Notes
Nominal input; full load; 25°C
p-p; Nominal input; full load; 20MHz bandwidth
25°C; recycle input voltage or PC to restart (>100ms off)
No load
No load to full load; nominal input
Output voltage 95% of nominal
Output voltage <250mV
0
25.5
17.5
12
V
OUT
, 200W (e.g. S375B12C200BL , V375B12C200BL)
Parameter
Efficiency
S375B12C200BL (enhanced efficiency)
V375B12C200BL (standard efficiency)
Ripple and noise
Output OVP setpoint
Dissipation, standby
Load regulation
Load current
Current limit
Short circuit current
Min
85.2
84.5
13.7
Typ
86.7
85.8
258
14.3
8.5
±0.02
19.2
19.2
Max
Unit
%
323
14.9
10
±0.2
16.67
22.6
22.6
mV
Volts
Watts
%
Amps
Amps
Amps
Notes
Nominal input; full load; 25°C
p-p; Nominal input; full load; 20MHz bandwidth
25°C; recycle input voltage or PC to restart (>100ms off)
Embedded systems are used in a large number of electronic devices, and their design involves both hardware and software technology. As computer technology has advanced, its technology has become incre...
This seminar mainly introduces two new Hall position sensors MLX90421/2. They are a new generation of products based on the optimized design of Melexis second-generation position sensors, which fully ...
If a multi-channel BUCK IC drives different loads, can the GND output to the loads be shared? Take the following circuit diagram as an example. This is a 2-channel BUCK chip that drives different load...
This is the fifth official annual Python Developer Survey, conducted in partnership between the Python Software Foundation and JetBrains. In the fall of 2021, more than 23,000 Python developers and en...
As high-end intelligent assisted driving enters its second half, the trend in the field of autonomous driving has changed recently. For a long time in the past, companies such as Xpeng, Ideal, N...[Details]
March 28th - Reporters learned that
MediaTek, the world's largest smartphone chip manufacturer, has successfully deployed the Tongyi Qianwen large model on flagship chips such as Dimensity 9300...[Details]
The transformer characteristic comprehensive tester is also called transformer tester, volt-ampere characteristic comprehensive tester, transformer characteristic tester, current and voltage transfo...[Details]
1. Method 0
Mode 0 constitutes a 13-bit timer/counter. The figure shows the logic circuit structure of Timer 0 in mode 0. The structure and operation of Timer 1 are exactly the same as those of Tim...[Details]
1 Introduction
Cyclic redundancy check code, referred to as CRC code, is a commonly used error detection code, which has been widely used in data communication. Different CRC codes have differen...[Details]
Today, the world's communication technology is developing rapidly. With the rapid development of micro-electromechanical systems, system-on-chip, wireless communication and low-power embedded techn...[Details]
Today, Samsung Electronics announced that it has begun mass production of eUFS 3.1 flash memory with a package capacity of 512GB, which can be used in mobile phones, tablets, etc. Compared wi...[Details]
Embedded systems are widely used in many fields such as industrial measurement and control, intelligent instruments, and smart homes. With the continuous expansion of the application scope of embed...[Details]
The single-chip microcomputer has the characteristics of flexible logic control functions, and the complex programmable logic device (CPLD) has the advantages of high integration, good reliability ...[Details]
According to foreign media reports, scientists from the Gwangju Institute of Science and Technology (GIST) in South Korea have discovered a new catalyst material that can significantly extend the lif...[Details]
Recently, Apple CarPlay has undergone an epic update. To summarize, the main points are as follows: Supports all screens in the car, including instruments, central control, and even "fish screen", ...[Details]
Henry Ford founded Ford Motor Company in 1903 at a time when few people could afford cars. They were expensive to manufacture, costly to repair, and complicated to operate. At the time, cars were sti...[Details]
On September 18, 2023, a battery storage unit caught fire at the Valley Center energy storage project in northern San Diego County, California, USA. Residents and businesses within a quarter mile o...[Details]
Recently, a netizen @林大数码 posted a photo of the front of what is suspected to be the Nut Pro 3, which attracted the attention of netizens. This front picture shows that the Nut Pro 3 will ...[Details]
Up to now, more than 180 models have been tested based on the CC-1000T intelligent cockpit evaluation system of Cheyun Research, of which more than 79% have the ability to upgrade via OTA, and more...[Details]