0.375” (9.5mm) lead length, 5lbs. (2.3 kg) tension
• Includes 1N6267 thru 1N6303A
1.0 (25.4)
MIN.
0.210 (5.3)
0.190 (4.8)
DIA.
0.375 (9.5)
0.285 (7.2)
Mechanical Data
Case:
Molded plastic body over passivated junction
Terminals:
Plated axial leads, solderable per MIL-STD-
750, Method 2026
Polarity:
For unidirectional types the color band denotes
the cathode, which is positive with respect to the anode
under normal TVS operation
Mounting Position:
Any
Weight:
0.045oz., 1.2g
Packaging codes/options:
1/1K per Bulk Box, 11K/box
4/1.4K per 13” Reel (52mm Tape), 4.2K/box
Dimensions in inches
and (millimeters)
1.0 (25.4)
MIN.
0.042 (1.07)
0.038 (0.96)
DIA.
Devices for Bidirectional Applications
For bi-directional, use C or CA suffix for types 1.5KE6.8 thru types 1.5KE440
(e.g. 1.5KE6.8C, 1.5KE440CA). Electrical characteristics apply in both directions.
Maximum Ratings and Characteristics
(T
Parameter
Peak power dissipation with a 10/1000µs waveform
(1)
(Fig. 1)
A
= 25°C unless otherwise noted)
Symbol
P
PPM
I
PPM
P
M(AV)
Limit
Minimum 1500
See Next Table
6.5
Unit
W
A
W
Peak pulse current wih a 10/1000µs waveform
(1)
Steady state power dissipation
at T
L
= 75
O
C, lead lengths 0.375” (9.5mm)
(2)
Peak forward surge current, 8.3ms
single half sine-wave superimposed on rated load
(JEDEC Method) unidirectional only
(3)
Maximum instantaneous forward voltage
at 100A for unidirectional only
(4)
Typical thermal resistance junction-to-lead
Typical thermal resistance junction-to-ambient
Operating junction and storage temperature range
Notes:
(1)
(2)
(3)
(4)
I
FSM
200
A
V
F
R
θJL
R
θJA
T
J
, T
STG
3.5/5.0
20
75
–55 to +175
V
°C/W
°C/W
O
C
Non-repetitive current pulse, per Fig.3 and derated above T
A
= 25°C per Fig. 2
Mounted on copper pad area of 1.6 x 1.6” (40 x 40mm) per Fig. 5
Measured on 8.3ms single half sine-wave or equivalent square wave, duty cycle = 4 pulses per minute maximum
V
F
= 3.5V for devices of V
(BR)
< 220V, and V
F
= 5.0 Volt max. for devices of V
(BR)
> 220V
11/7/00
1.5KE6.8 thru 1.5KE440CA
and 1N6267 thru 1N6303A
T
RANS
Z
ORB
®
Transient Voltage Suppressors
Electrical Characteristics
(T
JEDEC
Type
Number
1N6267
1N6267A
1N6268
1N6268A
1N6269
1N6269A
1N6270
1N6270A
1N6271
1N6271A
1N6272
1N6272A
1N6273
1N6273A
1N6274
1N6274A
1N6275
1N6275A
1N6276
1N6276A
1N6277
1N6277A
1N6278
1N6278A
1N6279
1N6279A
1N6280
1N6280A
1N6281
1N6281A
1N6282
1N6282A
1N6283
1N6283A
1N6284
1N6284A
1N6285
1N6285A
1N6286
1N6286A
1N6287
1N6287A
1N6288
1N6288A
1N6289
1N6289A
1N6290
1N6290A
1N6291
General
Semiconductor
Part
Number
+1.5KE6.8
+1.5KE6.8A
+1.5KE7.5
+1.5KE7.5A
+1.5KE8.2
+1.5KE8.2A
+1.5KE9.1
+1.5KE9.1A
+1.5KE10
+1.5KE10A
+1.5KE11
+1.5KE11A
+1.5KE12
+1.5KE12A
+1.5KE13
+1.5KE13A
+1.5KE15
+1.5KE15A
+1.5KE16
+1.5KE16A
+1.5KE18
+1.5KE18A
+1.5KE20
+1.5KE20A
+1.5KE22
+1.5KE22A
+1.5KE24
+1.5KE24A
+1.5KE27
+1.5KE27A
+1.5KE30
+1.5KE30A
+1.5KE33
+1.5KE33A
+1.5KE36
+1.5KE36A
+1.5KE39
+1.5KE39A
+1.5KE43
+1.5KE43A
+1.5KE47
+1.5KE47A
1.5KE51
1.5KE51A
1.5KE56
1.5KE56A
1.5KE62
1.5KE62A
1.5KE68
A
= 25°C unless otherwise noted)
Breakdown Voltage
V
(BR)
(V)
(1)
Min
6.12
6.45
6.75
7.13
7.38
7.79
8.19
8.65
9.00
9.50
9.90
10.5
10.8
11.4
11.7
12.4
13.5
14.3
14.4
15.2
16.2
17.1
18.0
19.0
19.8
20.9
21.6
22.8
24.3
25.7
27.0
28.5
29.7
31.4
32.4
34.2
35.1
37.1
38.7
40.9
42.3
44.7
45.9
48.5
50.4
53.2
55.8
58.9
61.2
Max
7.48
7.14
8.25
7.88
9.02
8.61
10.0
9.55
11.0
10.5
12.1
11.6
13.2
12.6
14.3
13.7
16.5
15.8
17.6
16.8
19.8
18.9
22.0
21.0
24.2
23.1
26.4
25.2
29.7
28.4
33.0
31.5
36.3
34.7
39.6
37.8
42.9
41.0
47.3
45.2
51.7
49.4
56.1
53.6
61.8
58.8
68.2
65.1
74.8
Test
Current
at
I
T
(mA)
10
10
10
10
10
10
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
Stand-off
Voltage
V
WM
(V)
5.50
5.80
6.05
6.40
6.63
7.02
7.37
7.78
8.10
8.55
8.92
9.40
9.72
10.2
10.5
11.1
12.1
12.8
12.9
13.6
14.5
15.3
16.2
17.1
17.8
18.8
19.4
20.5
21.8
23.1
24.3
25.6
26.8
28.2
29.1
30.8
31.6
33.3
34.8
36.8
38.1
40.2
41.3
43.6
45.4
47.8
50.2
53.0
55.1
Maximum
Reverse
Leakage
at V
WM
I
D
(4)
(µA)
1000
1000
500
500
200
200
50
50
10
10
5.0
5.0
5.0
5.0
5.0
5.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
Maximum
Peak Pulse
Current
I
PPM
(2)
(A)
139
143
128
133
120
124
109
112
100
103
92.6
96.2
86.7
89.8
78.9
82.4
68.2
70.8
63.8
66.7
56.6
59.5
51.5
54.2
47.0
49.0
43.2
45.2
38.4
40.0
34.5
36.2
31.4
32.8
28.8
30.1
26.6
27.8
24.2
25.3
22.1
23.1
20.4
21.4
18.6
19.5
16.9
17.6
15.3
Maximum
Clamping
Voltage
at I
PPM
V
C
(V)
10.8
10.5
11.7
11.3
12.5
12.1
13.8
13.4
15.0
14.5
16.2
15.6
17.3
16.7
19.0
18.2
22.0
21.2
23.5
22.5
26.5
25.2
29.1
27.7
31.9
30.6
34.7
33.2
39.1
37.5
43.5
41.4
47.7
45.7
52.0
49.9
56.4
53.9
61.9
59.3
67.8
64.8
73.5
70.1
80.5
77.0
89.0
85.0
98.0
Maximum
Temp.
Coefficient
of V
(BR)
(% /
°C)
0.057
0.057
0.061
0.061
0.065
0.065
0.068
0.068
0.073
0.073
0.075
0.075
0.076
0.078
0.081
0.081
0.084
0.084
0.086
0.086
0.088
0.089
0.090
0.090
0.092
0.092
0.094
0.094
0.096
0.096
0.097
0.097
0.098
0.098
0.099
0.099
0.100
0.100
0.101
0.101
0.101
0.101
0.102
0.102
0.103
0.103
0.104
0.104
0.104
1.5KE6.8 thru 1.5KE440CA
and 1N6267 thru 1N6303A
T
RANS
Z
ORB
®
Transient Voltage Suppressors
Electrical Characteristics
(Cont’d)
JEDEC
Type
Number
1N6291A
1N6292
1N6292A
1N6293
1N6293A
1N6294
1N6294A
1N6295
1N6295A
1N6296
1N6296A
1N6297
1N6297A
1N6298
1N6298A
1N6299
1N6299A
1N6300
1N6300A
1N6301
1N6301A
1N6302
1N6302A
1N6303
1N6303A
General
Semiconductor
Part
Number
1.5KE68A
1.5KE75
1.5KE75A
1.5KE82
1.5KE82A
1.5KE91
1.5KE91A
1.5KE100
1.5KE100A
1.5KE110
1.5KE 110A
1.5KE120
1.5KE120A
1.5KE130
1.5KE130A
1.5KE150
1.5KE150A
1.5KE160
1.5KE160A
1.5KE170
1.5KE170A
1.5KE180
1.5KE180A
1.5KE200
1.5KE200A*
1.5KE220
1.5KE220A*
1.5KE250
1.5KE250A
1.5KE300
1.5KE300A
1.5KE350
1.5KE350A
1.5KE400
1.5KE400A
1.5KE440
1.5KE440A
Breakdown Voltage
V
(BR)
(V)
(1)
Min
64.6
67.5
71.3
73.8
77.9
81.9
86.5
90.0
95.0
99.0
105
108
114
117
124
136
143
144
152
153
162
162
171
180
190
198
209
225
237
270
285
315
333
360
380
396
418
Max
71.4
82.5
78.8
90.2
86.1
100.0
95.5
110
105
121
116
132
126
143
137
165
158
176
168
187
179
198
189
220
210
242
231
275
263
330
315
385
368
440
420
484
462
(T
A
= 25°C unless otherwise noted)
Test
Current
at
I
T
(mA)
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
Stand-off
Voltage
V
WM
(V)
58.1
60.7
64.1
66.4
70.1
73.7
77.8
81.0
85.5
89.2
94.0
97.2
102
105
111
121
128
130
136
138
145
146
154
162
171
175
185
202
214
243
256
284
300
324
342
356
376
Maximum
Reverse
Leakage
at V
WM
I
D
(4)
(µA)
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
Maximum
Peak Pulse
Current
I
PPM
(2)
(A)
16.3
13.9
14.6
12.7
13.3
11.5
12.0
10.4
10.9
9.5
9.9
8.7
9.1
8.0
8.4
7.0
7.2
6.5
6.8
6.1
6.4
5.8
6.1
5.2
5.5
4.4
4.6
4.2
4.4
3.5
3.6
3.0
3.1
2.6
2.7
2.4
2.5
Maximum
Clamping
Voltage
at I
PPM
V
C
(V)
92.0
109
104
118
113
131
125
144
137
158
152
173
165
187
179
215
207
230
219
244
234
258
246
287
274
344
328
360
344
430
414
504
482
574
548
631
602
Maximum
Temp.
Coefficient
of V
(BR)
(% /
°C)
0.104
0.105
0.105
0.105
0.105
0.106
0.106
0.106
0.106
0.107
0.107
0.107
0.107
0.107
0.107
0.108
0.106
0.106
0.108
0.108
0.108
0.108
0.108
0.108
0.108
0.108
0.108
0.110
0.110
0.110
0.110
0.110
0.110
0.110
0.110
0.110
0.110
Notes:
(1) V
(BR)
measured after I
T
applied for 300µs, I
T
=square wave pulse or equivalent
(2) Surge current waveform per Fig. 3 and derate per Fig. 2
(3) All terms and symbols are consistent with ANSI/IEEE CA62.35
(4) For bidirectional types with V
R
10 volts and less the I
D
limit is doubled
* Bidirectional versions are UL approved under component across the line protection, ULV1414 file number E108274 (1.5KE200CA, 1.5KE220CA)
+ UL listed for Telecom applications protection, 497B, file number E136766 for both uni-directional and bi-directional devices
Application
• This series of Silicon Transient Suppressors is used in applications where large voltage transients can permanently damage voltage-sensitive components.
• The TVS diode can be used in applications where induced lightning on rural or remote transmission lines presents a hazard to electronic circuitry
(ref: R.E.A. specification P.E. 60).
• This Transient Voltage Suppressor diode has a pulse power rating of 1500 watts for one millisecond. The response time of TVS diode clamping action is
effectively instantaneous (1 x 10
-9
seconds bidirectional); therefore, they can protect integrated circuits, MOS devices, hybrids, and other voltage sensitive
semiconductors and components. TVS diodes can also be used in series or parallel to increase the peak power ratings.
[i=s]This post was last edited by DDZZ669 on 2018-11-21 18:19[/i] [md]## Software Installation According to the [CY8CKIT-149 User Manual]([url=https://en.eeworld.com/bbs/forum.php?mod=attachment&aid=M...
This article and design code were written by FPGA enthusiast Xiao Meige. Without the author's permission, this article is only allowed to be copied and reproduced on online forums, and the original au...
In libero soc 11.8, when I customize IP cores, i.e. blocks, I encounter confusions: 1. After encapsulating a module without parameters into a block, I can instantiate, synthesize, and simulate normall...
Aviation software is not mysterious. From the perspective of computer architecture, it is not much different from ordinary computer systems. It is composed of processors, buses, I/O devices, storage d...
Zhixin Li Lao's B station live broadcast FPGA training engineer employment course (live class) starts at 9 o'clock every dayhttps://live.bilibili.com/h5/23300129?share_source=wechatZhixin Technology F...
Next-generation multi-run, multi-engine verification tool that leverages big data and artificial intelligence to optimize verification workloads, improve coverage, and accelerate bug tracing for ...[Details]
As Japan tightens restrictions on the export of semiconductor materials, many South Koreans are calling on South Korea to produce its own materials. However, Yonhap News Agency reported that there is...[Details]
1. HAL Structure The role of HAL is to abstract the basic register read and write operations so that programmers only need to care about the behavioral operations of the chip module. The cube package...[Details]
Electricity big data has suddenly attracted much attention.
On February 13, CCTV focused on the first "Enterprise Reopening Power Index" in China proposed by State Grid Zhejiang Electric Power...[Details]
Recently, we learned from relevant channels that BorgWarner announced that it will launch a new 800V silicon carbide inverter, which will be installed on two pure electric SUVs. The first model is sc...[Details]
Micron Releases 2021 “Everyone” DEI Report, Demonstrating Global Diversity, Equality, and Inclusion Commitment and Achievements
Fourth Annual DEI Report Reflects Micron’s Strong Comm...[Details]
Recently, the National Development and Reform Commission, the Ministry of Science and Technology, the Ministry of Industry and Information Technology, the Ministry of Finance and other four departmen...[Details]
introduction In modern warfare, with the continuous improvement of the degree of mobility, automation and informatization of weapon equipment systems, the number of on-board devices on military veh...[Details]
5G licenses have become a hot topic recently. On March 28, Miao Wei, Minister of Industry and Information Technology, said at the Boao Forum for Asia Annual Conference: "5G licenses will be i...[Details]
Abstract: This paper analyzes the PROFIBUS-DP transmission protocol and message structure, designs a PROFIBUS-DP bus performance analysis and diagnosis software based on serial communication, gives...[Details]
The third generation semiconductor silicon carbide (SiC) and gallium nitride (GaN) are emerging power semiconductors in recent years. Compared with traditional silicon (Si)-based power semiconductors...[Details]
Recently, the China Electrical Equipment Industry Association and Beijing Jianheng Certification Center (CGC) held a working group meeting in Beijing on two industry standards: "Technical Requireme...[Details]
5G number release time postponed. Recently, the operator financial website exclusively learned that the 5G commercial number release time of the three major operators has been postponed to before Sep...[Details]
Recently, my tutor is going to write a book about SAME4 microcontrollers, and I read this book as a beginner in embedded systems. Now he also asked me to write a few small programs and make some exam...[Details]
Everyone is equal before the law, and of course, equal human rights can also be seen in cars. The increasing attention paid to pedestrian protection around the world reflects the equal relationship b...[Details]