74LVX174
LOW VOLTAGE CMOS HEX D-TYPE FLIP-FLOP WITH CLEAR
WITH 5V TOLERANT INPUTS
s
s
s
HIGH SPEED:
f
MAX
= 180MHz (TYP.) at V
CC
= 3.3V
5V TOLERANT INPUTS
INPUT VOLTAGE LEVEL:
V
IL
=0.8V, V
IH
=2V at V
CC
=3V
LOW POWER DISSIPATION:
I
CC
= 4
µA
(MAX.) at T
A
=25°C
LOW NOISE:
V
OLP
= 0.3V (TYP.) at V
CC
= 3.3V
SYMMETRICAL OUTPUT IMPEDANCE:
|I
OH
| = I
OL
= 4mA (MIN)
BALANCED PROPAGATION DELAYS:
t
PLH
≅
t
PHL
OPERATING VOLTAGE RANGE:
V
CC
(OPR) = 2V to 3.6V (1.2V Data Retention)
PIN AND FUNCTION COMPATIBLE WITH
74 SERIES 174
IMPROVED LATCH-UP IMMUNITY
SOP
TSSOP
s
s
Table 1: Order Codes
PACKAGE
SOP
TSSOP
s
s
s
s
s
s
POWER DOWN PROTECTION ON INPUTS
DESCRIPTION
The 74LVX174 is a low voltage CMOS HEX
D-TYPE FLIP FLOP WITH CLEAR NON
INVERTING fabricated with sub-micron silicon
gate and double-layer metal wiring C
2
MOS
technology. It is ideal for low power, battery
operated and low noise 3.3V applications.
Figure 1: Pin Connection And IEC Logic Symbols
te
le
so
b
O
ro
P
uc
d
s)
t(
Information signals applied to D inputs are
transferred to the Q outputs on the positive going
edge of the clock pulse.
When the CLEAR input is held low, the Q outputs
are held low independently of the other inputs.
Power down protection is provided on all inputs
and 0 to 7V can be accepted on inputs with no
regard to the supply voltage.
This device can be used to interface 5V to 3V
system. It combines high speed performance with
the true CMOS low power consumption.
All inputs and outputs are equipped with
protection circuits against static discharge, giving
them 2KV ESD immunity and transient excess
voltage.
O
-
so
b
t
le
r
P
e
du
o
T&R
s)
t(
c
74LVX174MTR
74LVX174TTR
August 2004
Rev. 3
1/12
74LVX174
Table 4: Absolute Maximum Ratings
Symbol
V
CC
V
I
V
O
I
IK
I
OK
I
O
T
stg
T
L
Supply Voltage
DC Input Voltage
DC Output Voltage
DC Input Diode Current
DC Output Diode Current
DC Output Current
Storage Temperature
Lead Temperature (10 sec)
Parameter
Value
-0.5 to +7.0
-0.5 to +7.0
-0.5 to V
CC
+ 0.5
- 20
±
20
±
25
±
50
-65 to +150
300
Unit
V
V
V
mA
mA
mA
mA
I
CC
or I
GND
DC V
CC
or Ground Current
Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these conditions is
not implied.
Table 5: Recommended Operating Conditions
Symbol
V
CC
V
I
V
O
T
op
dt/dv
Supply Voltage (note 1)
Input Voltage
Output Voltage
Operating Temperature
Input Rise and Fall Time (note 2) (V
CC
= 3.3V)
Parameter
1) Truth Table guaranteed: 1.2V to 3.6V
2) V
IN
from 0.8V to 2.0V
Table 6: DC Specifications
Symbol
Parameter
V
IH
V
IL
te
le
so
b
O
High Level Input
Voltage
Low Level Input
Voltage
High Level Output
Voltage
Low Level Output
Voltage
ro
P
V
CC
(V)
2.0
3.0
3.6
2.0
3.0
3.6
2.0
3.0
3.0
2.0
3.0
3.0
Test Condition
T
A
= 25°C
Min.
1.5
2.0
2.4
0.5
0.8
0.8
I
O
=-50
µA
I
O
=-50
µA
I
O
=-4 mA
I
O
=50
µA
I
O
=50
µA
I
O
=4 mA
V
I
= 5V or GND
V
I
= V
CC
or GND
1.9
2.9
2.58
0.0
0.0
0.1
0.1
0.36
±
0.1
4
2.0
3.0
Typ.
Max.
uc
d
)-
(s
t
b
O
so
t
le
r
P
e
Value
2 to 3.6
0 to 5.5
0 to V
CC
-55 to 125
0 to 100
du
o
s)
t(
c
°C
°C
Unit
V
V
V
°C
ns/V
Value
-40 to 85°C
Min.
1.5
2.0
2.4
0.5
0.8
0.8
1.9
2.9
2.48
0.1
0.1
0.44
±
1
40
1.9
2.9
2.4
0.1
0.1
0.55
±
1
40
µA
µA
V
V
Max.
-55 to 125°C
Min.
1.5
2.0
2.4
0.5
0.8
0.8
Max.
V
Unit
V
V
OH
V
OL
I
I
I
CC
Input Leakage
Current
Quiescent Supply
Current
3.6
3.6
3/12
74LVX174
Table 7: Dynamic Switching Characteristics
Test Condition
Symbol
Parameter
V
CC
(V)
3.3
3.3
3.3
C
L
= 50 pF
T
A
= 25°C
Min.
Typ.
0.3
-0.8
2
0.8
-0.3
V
Max.
0.8
Value
-40 to 85°C
Min.
Max.
-55 to 125°C
Min.
Max.
Unit
V
OLP
V
OLV
V
IHD
V
ILD
Dynamic Low Voltage
Quiet Output (note 1, 2)
Dynamic High Voltage
Input (note 1, 3)
Dynamic Low Voltage
Input (note 1, 3)
1) Worst case package.
2) Max number of outputs defined as (n). Data inputs are driven 0V to 3.3V, (n-1) outputs switching and one output at GND.
3) Max number of data inputs (n) switching. (n-1) switching 0V to 3.3V. Inputs under test switching: 3.3V to threshold (V
ILD
), 0V to threshold
(V
IHD
), f=1MHz.
Table 8: AC Electrical Characteristics
(Input t
r
= t
f
= 3ns)
Test Condition
Symbol
Parameter
V
CC
(V)
2.7
2.7
3.3
(*)
t
PLH
t
PHL
Propagation Delay
Time CLEAR to Q
3.3
(*)
2.7
2.7
3.3
(*)
t
WL
t
W
t
S
CLEAR pulse
Width, HIGH
3.3
(*)
2.7
C
L
(pF)
15
50
15
50
15
50
15
50
T
A
= 25°C
Min.
Typ.
7.6
10.1
5.9
8.4
Value
t
PLH
t
PHL
Propagation Delay
Time CLOCK to Q
te
le
so
b
O
CLOCK pulse
Width
t
h
Setup Time Q to
CLOCK HIGH or
LOW
Hold Time Q to
CLOCK HIGH or
LOW
Recovery Time
CLEAR to Q
Maximum Clock
Frequency
r
P
2.7
3.3
od
uc
s)
t(
O
-
so
b
Max.
14.5
18.0
9.3
12.8
15.0
18.5
9.7
13.2
t
le
Min.
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
-40 to 85°C
r
P
e
Max.
17.5
21.0
11.0
14.5
18.5
22.0
11.5
15.0
7.5
5.0
7.5
5.0
8.5
6.0
0.0
0.0
4.5
3.0
du
o
Max.
18.5
22.0
12.0
15.5
19.5
23.0
12.5
16.0
7.5
5.0
7.5
5.0
8.5
6.0
0.0
0.0
s)
t(
c
Unit
-55 to 125°C
Min.
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
ns
7.9
10.4
6.2
8.7
6.5
5.0
6.5
5.0
7.5
5.0
0.0
0.0
4.5
3.0
ns
3.3
(*)
2.7
3.3
(*)
2.7
3.3
(*)
ns
ns
ns
(*)
ns
t
REM
f
MAX
2.7
3.3
(*)
2.7
2.7
3.3
(*)
3.3
(*)
2.7
3.3
(*)
15
50
15
50
50
50
65
45
115
65
ns
130
60
180
95
0.5
0.5
1.0
1.0
55
40
95
55
1.5
1.5
1.5
1.5
ns
MHz
t
OSLH
t
OSHL
Output To Output
Skew Time (note1,
2)
1) Skew is defined as the absolute value of the difference between the actual propagation delay for any two outputs of the same device switch-
ing in the same direction, either HIGH or LOW
2) Parameter guaranteed by design (*) Voltage range is 3.3V
±
0.3V
4/12
74LVX174
Table 9: Capacitive Characteristics
Test Condition
Symbol
Parameter
V
CC
(V)
3.3
3.3
f
IN
= 10MHz
T
A
= 25°C
Min.
Typ.
5
23
Max.
Value
-40 to 85°C
Min.
Max.
10
-55 to 125°C
Min.
Max.
10
pF
pF
Unit
C
IN
C
PD
Input Capacitance
Power Dissipation
Capacitance
(note 1)
1) C
PD
is defined as the value of the IC’s internal equivalent capacitance which is calculated from the operating current consumption without
load. (Refer to Test Circuit). Average operating current can be obtained by the following equation. I
CC(opr)
= C
PD
x V
CC
x f
IN
+ I
CC
/n (per circuit)
Figure 4: Test Circuit
C
L
=15/50pF or equivalent (includes jig and probe capacitance)
R
T
= Z
OUT
of pulse generator (typically 50Ω)
Figure 5: Waveform - Propagation Delays
(f=1MHz; 50% duty cycle)
te
le
so
b
O
ro
P
uc
d
s)
t(
O
-
so
b
t
le
r
P
e
du
o
s)
t(
c
5/12