【Experimental Hardware】
1. ST NUCLEO-U5A5ZJ-Q development board
2. Digital power supply
3. Two multimeters
【develop software】
1、stm32CubeMAX
2、Keil5.38
【Experimental steps】
1. Reading material "RM0456" gives the input and output pins of our two amplifiers in Section 38.3.3.
The following table lists the schematic diagram of the PAG mode, which can be selected to amplify the output gain by 2, 4, 8, or 16 times.
2. After understanding the principle, open stm32cubeMAX and configure opamp1:
The IO is listed in GPIO:
After generating the code, open the project.
【Code added】
1. In the code, the initialization of the generated code is automatically given, but if you want to use OPAMP, you also need to add HAL_OPAMP_Start(&hopamp1); to start it. Of course, if in a low-power scenario, we can also use HAL_OPAMP_Stop(&hopamp1); to stop the amplifier.
The specific code is as follows:
/* USER CODE BEGIN Header */
/**
******************************************************************************
* [url=home.php?mod=space&uid=1307177]@File[/url] GPIO/GPIO_IOToggle/Src/main.c
* [url=home.php?mod=space&uid=1315547]@author[/url] MCD Application Team
* [url=home.php?mod=space&uid=159083]@brief[/url] This example describes how to configure and use GPIOs through
* the STM32U5xx HAL API.
******************************************************************************
* [url=home.php?mod=space&uid=1020061]@attention[/url] *
* Copyright (c) 2022 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
*/
/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "main.h"
#include "icache.h"
#include "memorymap.h"
#include "opamp.h"
#include "usart.h"
#include "gpio.h"
/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */
#include "tos_k.h "
#include "cmsis_os.h"
/* USER CODE END Includes */
/* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN PTD */
extern OPAMP_HandleTypeDef hopamp1;
/* USER CODE END PTD */
/* Private define ------------------------------------------------------------*/
/* USER CODE BEGIN PD */
/* USER CODE END PD */
/* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN PM */
/* USER CODE END PM */
/* Private variables ---------------------------------------------------------*/
/* USER CODE BEGIN PV */
static GPIO_InitTypeDef GPIO_InitStruct;
/* USER CODE END PV */
/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
static void SystemPower_Config(void);
/* USER CODE BEGIN PFP */
//task1
#define TASK1_STK_SIZE 512
void task1(void *pdata);
osThreadDef(task1, osPriorityNormal, 1, TASK1_STK_SIZE);
//task2
#define TASK2_STK_SIZE 512
void task2(void *pdata);
osThreadDef(task2, osPriorityNormal, 1, TASK2_STK_SIZE);
/* USER CODE END PFP */
/* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 */
void task1(void *pdata)
{
while(1)
{
HAL_GPIO_TogglePin(LED1_GPIO_PORT, LED1_PIN);
osDelay(200);
}
}
void task2(void *pdata) {
while(1) {
HAL_GPIO_TogglePin(LED2_GPIO_PORT, LED2_PIN);
osDelay(1000);
}
}
/* USER CODE END 0 */
/**
* @brief The application entry point.
* @retval int
*/
int main(void)
{
/* USER CODE BEGIN 1 */
/* STM32U5xx HAL library initialization:
- Configure the Flash prefetch
- Configure the Systick to generate an interrupt each 1 msec
- Set NVIC Group Priority to 3
- Low Level Initialization
*/
/* USER CODE END 1 */
/* MCU Configuration--------------------------------------------------------*/
/* Reset of all peripherals, Initializes the Flash interface and the Systick. */
HAL_Init();
/* USER CODE BEGIN Init */
/* USER CODE END Init */
/* Configure the system clock */
SystemClock_Config();
/* Configure the System Power */
SystemPower_Config();
/* USER CODE BEGIN SysInit */
/* USER CODE END SysInit */
/* Initialize all configured peripherals */
MX_GPIO_Init();
MX_ICACHE_Init();
MX_USART1_UART_Init();
MX_USART2_UART_Init();
MX_OPAMP1_Init();
/* USER CODE BEGIN 2 */
HAL_OPAMP_Start(&hopamp1);
/* -1- Enable GPIO Clock (to be able to program the configuration registers) */
LED1_GPIO_CLK_ENABLE();
LED2_GPIO_CLK_ENABLE();
/* -2- Configure IO in output push-pull mode to drive external LEDs */
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH;
GPIO_InitStruct.Pin = LED1_PIN;
HAL_GPIO_Init(LED1_GPIO_PORT, &GPIO_InitStruct);
GPIO_InitStruct.Pin = LED2_PIN;
HAL_GPIO_Init(LED2_GPIO_PORT, &GPIO_InitStruct);
osKernelInitialize();
osThreadCreate(osThread(task1),NULL);
osThreadCreate(osThread(task2),NULL);
osKernelStart();
/* USER CODE END 2 */
/* Infinite loop */
/* USER CODE BEGIN WHILE */
while (1)
{
/* USER CODE END WHILE */
/* USER CODE BEGIN 3 */
HAL_GPIO_TogglePin(LED1_GPIO_PORT, LED1_PIN);
/* Insert delay 100 ms */
HAL_Delay(100);
HAL_GPIO_TogglePin(LED2_GPIO_PORT, LED2_PIN);
/* Insert delay 100 ms */
HAL_Delay(100);
}
/* USER CODE END 3 */
}
/**
* @brief System Clock Configuration
* @retval None
*/
void SystemClock_Config(void)
{
RCC_OscInitTypeDef RCC_OscInitStruct = {0};
RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};
/** Configure the main internal regulator output voltage
*/
if (HAL_PWREx_ControlVoltageScaling(PWR_REGULATOR_VOLTAGE_SCALE1) != HAL_OK)
{
Error_Handler();
}
/** Initializes the CPU, AHB and APB buses clocks
*/
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_MSI;
RCC_OscInitStruct.MSIState = RCC_MSI_ON;
RCC_OscInitStruct.MSICalibrationValue = RCC_MSICALIBRATION_DEFAULT;
RCC_OscInitStruct.MSIClockRange = RCC_MSIRANGE_4;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_MSI;
RCC_OscInitStruct.PLL.PLLMBOOST = RCC_PLLMBOOST_DIV1;
RCC_OscInitStruct.PLL.PLLM = 1;
RCC_OscInitStruct.PLL.PLLN = 80;
RCC_OscInitStruct.PLL.PLLP = 2;
RCC_OscInitStruct.PLL.PLLQ = 2;
RCC_OscInitStruct.PLL.PLLR = 2;
RCC_OscInitStruct.PLL.PLLRGE = RCC_PLLVCIRANGE_0;
RCC_OscInitStruct.PLL.PLLFRACN = 0;
if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
{
Error_Handler();
}
/** Initializes the CPU, AHB and APB buses clocks
*/
RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
|RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2
|RCC_CLOCKTYPE_PCLK3;
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV1;
RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;
RCC_ClkInitStruct.APB3CLKDivider = RCC_HCLK_DIV1;
if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_4) != HAL_OK)
{
Error_Handler();
}
}
/**
* @brief Power Configuration
* @retval None
*/
static void SystemPower_Config(void)
{
/*
* Disable the internal Pull-Up in Dead Battery pins of UCPD peripheral
*/
HAL_PWREx_DisableUCPDDeadBattery();
/*
* Switch to SMPS regulator instead of LDO
*/
if (HAL_PWREx_ConfigSupply(PWR_SMPS_SUPPLY) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN PWR */
/* USER CODE END PWR */
}
/* USER CODE BEGIN 4 */
/* USER CODE END 4 */
/**
* @brief This function is executed in case of error occurrence.
* @retval None
*/
void Error_Handler(void)
{
/* USER CODE BEGIN Error_Handler_Debug */
/* User can add his own implementation to report the HAL error return state */
while(1)
{
}
/* USER CODE END Error_Handler_Debug */
}
#ifdef USE_FULL_ASSERT
/**
* @brief Reports the name of the source file and the source line number
* where the assert_param error has occurred.
* @param file: pointer to the source file name
* @param line: assert_param error line source number
* @retval None
*/
void assert_failed(uint8_t *file, uint32_t line)
{
/* USER CODE BEGIN 6 */
/* User can add his own implementation to report the file name and line number,
ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
/* Infinite loop */
while (1)
{
}
/* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT */
[Experimental results]
Under the effect of 2x gain
Test results
Input voltage (mv) |
Output voltage(mv) |
Difference (mv) |
8.3 |
17.8 |
-.1.2 |
18.2 |
37.6 |
-1.2 |
98.2 |
197.8 |
-1.4 |
198.1 |
389.2 |
7 |
495 |
998.5 |
-8.5 |
993 |
1999.3 |
-13.3 |
1492 |
3002.3 |
-18.3 |
1592 |
3203 |
-19 |
Note: The difference is: Vin*2-Vout
【Summarize】
After the above tests, when the input voltage remains unchanged, the output is very stable and the error is well controlled.