According to my previous tests, the continuous read and write speeds of ST-Link V2 and Jlink V8 are around 160KB/S. However, most CMSIS-DAP debuggers are limited to full-speed HID and the speed is difficult to increase. The continuous read and write speed of DAPLINK+ OpenOCD The speed is only 23KB/S.
At the beginning of the year, I tried to use NUC505 for CMSIS-DAP. 505 should be the cheapest integrated USB HS PHY microcontroller on the market. The high-speed HID message can be set to 1024Byte, and the sending and receiving interval is 125uS. There is no bottleneck in the USB part. However, its SPI module is very slow. After a transmission is completed, it will wait for several CLKs before triggering the completion flag. Even if the CLK is increased to 14MHz, the continuous read and write speed is only 150KB/S, which can only be said to be dead wood. It cannot be carved.
The protagonist this time, GD32F350, I knew about it last year. I heard that it is the same price as GD32F150. The USB part has been changed to DWCOTG, and the execution speed of the last 32KB code will not be snail. After reading the datasheet in detail, I found that the internal 48M clock can be calibrated through the USB SOF signal, so that a crystal oscillator is not needed. The price is said to be as low as 30 cents in bulk. Well, it’s just so-so. Anyway, I bought 3pcs on Taobao for a total of 21 yuan. In general, it "seems" to be a super low-price solution, similar to the SPI design of the ST-LinkV2 main chip, and may be able to reach the mainstream speed indicator of 160KB/S, so it is worth a try.
Blockdiagram
Devices | Class | introduce | Datasheet |
---|---|---|---|
GD32F350CBT6 | The embedded processor and controller | ARM Cortex-M4 32-bit MCU,128KB Flash,16KB SRAM,108MHz | Download |
All reference designs on this site are sourced from major semiconductor manufacturers or collected online for learning and research. The copyright belongs to the semiconductor manufacturer or the original author. If you believe that the reference design of this site infringes upon your relevant rights and interests, please send us a rights notice. As a neutral platform service provider, we will take measures to delete the relevant content in accordance with relevant laws after receiving the relevant notice from the rights holder. Please send relevant notifications to email: bbs_service@eeworld.com.cn.
It is your responsibility to test the circuit yourself and determine its suitability for you. EEWorld will not be liable for direct, indirect, special, incidental, consequential or punitive damages arising from any cause or anything connected to any reference design used.
Supported by EEWorld Datasheet