1. Introduction (2 hours)
Microwaves and their characteristics; Applications of microwave technology; Navigation waves and their general transmission characteristics;
2. Transmission line theory (10 hours)
Transmission line equations and their solutions; Distributed parameter impedance; Analysis of working conditions of lossless transmission lines; Characteristics and calculations of lossy lines; Smith chart; impedance matching.
3. Regular metal waveguide (6 hours)
Rectangular waveguide; circular waveguide; coaxial line; normal scale characteristics of waveguide.
4. Microwave integrated transmission lines (8 hours)
Conformal transformation method for calculating the characteristic impedance of transmission lines; strip lines; coupled strip lines and coupled microstrip lines; other types of planar transmission lines.
5. Dielectric waveguides and optical fibers (4 hours)
Surface waves and their characteristics; simple dielectric waveguides; dielectric mirror lines; optical fibers; thin film optical fiber waveguides and ribbon optical waveguides.
6. Microwave network basics (8 hours)
equivalent network of microwave joints; impedance characteristics of one-port network; impedance and admittance matrix; scattering matrix; transfer parameter matrix; transmission scattering matrix; signal flow diagram method.
7. Microwave resonator (10 hours)
Basic characteristics and parameters of microwave resonator; transmission line resonator; metal waveguide resonant cavity; dielectric resonator; Fabry-Ross resonator; resonator excitation; perturbation theory of resonant cavity .
8. Commonly used microwave components (6 hours)
: waveguide mode excitation devices; commonly used microwave components; microwave periodic structures; microwave ferrite isolators and circulators.
Unfold ↓