pdf

Mathematics of Deep Learning: Understanding Neural Networks

  • 2024-06-17
  • 7.41MB
  • Points it Requires : 3

Math for Deep Learning: What You Need to Know to Understand Neural Networks by Ronald T. Kneusel Math for Deep Learning provides the essential math you need to understand deep learning discussions, explore more complex implementations, and better use deep learning toolkits. With Math for Deep Learning, you will learn the essential math and background used in deep learning. You will learn key deep learning-related topics in probability, statistics, linear algebra, differential calculus, and matrix calculus through Python examples, as well as how to implement data flow in neural networks, backpropagation, and gradient descent. You will also use Python to study the math behind these algorithms and even build a fully functional neural network. In addition, you will learn about gradient descent, including variants commonly used by the deep learning community: SGD, Adam, RMSprop, and Adagrad/Adadelta.

unfold

You Might Like

Uploader
sigma
 

Recommended ContentMore

Popular Components

Just Take a LookMore

EEWorld
subscription
account

EEWorld
service
account

Automotive
development
circle

About Us Customer Service Contact Information Datasheet Sitemap LatestNews


Room 1530, 15th Floor, Building B, No.18 Zhongguancun Street, Haidian District, Beijing, Postal Code: 100190 China Telephone: 008610 8235 0740

Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved 京ICP证060456号 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号
×