pdf

Signals and Systems(Duan Zhemin)

  • 2022-04-17
  • 11.25MB
  • Points it Requires : 2

  This book is \"General Higher Education\'s Eleventh Five-Year Plan* Planning Textbook\". The third edition is revised based on the \"Basic Requirements for Teaching Signals and Systems Courses\" formulated by the Teaching Guidance Subcommittee of the Electronic Information Science and Electrical Information Basic Courses in Colleges and Universities of the Ministry of Education. The book contains a total of 9 chapters: basic concepts of signals and systems; time domain analysis of continuous systems; frequency domain analysis of continuous signals; frequency domain analysis of continuous systems; complex frequency domain analysis of continuous systems; complex frequency domain system functions and system simulation; discrete signals and System time domain analysis; discrete signal and system Z domain analysis; state variable method. This book can be used as a teaching material for the \"Signals and Systems\" course for undergraduates majoring in electronic information science and engineering, automation, electrical engineering and automation, and computer science and technology in ordinary colleges and universities. It can also be used by other majors and engineering. Reference for technicians. Chapter 1 Basic concepts of signals and systems 1.1 Description and classification of signals 1.1.1 Description of signals 1.1.2 Classification of signals 1.2 Commonly used continuous time signals and their time domain characteristics 1.3 Time domain transformation and operation of continuous time signals 1.3.1 Signal time domain transformation 1.3.2 Time domain operation 1.4 Definition and classification of system 1.4.1 Definition of system 1.4.2 Classification of system 1.5 Properties of linear time-invariant system 1.5.1 Homogeneity 1.5.2 Superposition 1.5.3 Linearity 1.5.4 Time invariance 1.5.5 Differentiability 1.5.6 Integrality 1.6 Introduction to Linear System Analysis Exercise 1 Chapter 2 Time Domain Analysis of Continuous Systems 2.1 Classical Time Domain Analysis Method 2.1.1 Differential Equations of the System 2.1.2 Differential Equations Solution of 2.2 Differential operator representation of differential equation 2.3 Zero input response and zero state response 2.3.1 Solution of zero input response and zero state response 2.3.2 Transfer operator solution method of zero input response 2.3.3 Linear characteristics of system response Analysis 2.4 Impulse response and step response of the system 2.4.1 Definition of impulse response and step response 2.4.2 Solution of impulse response 2.4.3 Solution of step response 2.5 Convolution integral 2.5.1 Convolution integral Definition 2.5.2 Discussion of the upper and lower limits of convolution integral 2.5.3 Graphical explanation of convolution integral 2.5.4 Operation rules of convolution integral 2.5.5 Main properties of convolution integral 2.5.6 Commonly used convolution integral table 2.6 Find the system Convolution integral method of zero state response 2.7 Numerical calculation of convolution integral Exercise 2 Chapter 3 Frequency domain analysis of continuous signals 3.1 Introduction 3.2 Response of LTI system to complex exponential signal 3.3 Complete orthogonal function set representation of signal 3.3.1 Orthogonality Vector 3.3.2 Orthogonal functions and orthogonal function sets 3.3.3 Complete orthogonal function set 3.3.4 Common complete orthogonal function set 3.4 Fourier series representation of continuous time periodic signals 3.4.1 Trigonometric function expression 3.4 .2 Exponential form 3.4.3 Convergence of Fourier series 3.4.4 Relationship between symmetry of periodic signals and Fourier coefficients 3.4.5 Properties of Fourier series 3.5 Spectrum of periodic signals 3.5.1 Periodic signals Spectrum 3.5.2 Effective spectrum width of periodic signal 3.5.3 Relationship between periodic signal spectrum and period T 3.5.4 Power spectrum of periodic signal 3.6 Spectrum of non-periodic signal 3.6.1 Spectrum function of non-periodic signal 3.6.2 Fourier Transformation 3.6.3 The existence conditions of Fourier transform 3.6.4 Spectral function of typical signals 3.7 Basic properties of Fourier transform 3.7.1 Linearity 3.7.2 Symmetry 3.7.3 Foldability 3.7.4 Scale transformation 3.7.5 Time shift 3.7.6 Frequency shift 3.7.7 Time domain differential 3.7.8 Frequency domain differential 3.7.9 Time domain integral 3.7.10 Frequency domain integral 3.7.11 Time domain convolution theorem 3.7.12 Frequency domain Convolution theorem 3.7.13 Parseval\'s theorem 3.7.14 Odd and even imaginary and real properties 3.8 Fourier transform of periodic signals 3.8.1 Fourier transform of complex exponential signals 3.8.2 Fourier transform of cosine and sine signals 3.8.3 Fourier transform of unit impulse sequence δT(t) 3.8.4 Fourier transform of general periodic signals 3.9 Power spectrum and energy spectrum 3.9.1 Power spectrum 3.9.2 Energy spectrum Exercise 3 Chapter 4 Frequency domain analysis of continuous systems 4.1 Introduction 4.2 System response to non-sinusoidal periodic signals 4.2.1 Basic signal e jωt? passes through the linear system 4.2.2 Sinusoidal signal passes through the linear system 4.3 System response to non-periodic signals 4.4 Frequency domain system function 4.4.1 Definition 4.4.2 The physical meaning of H( j ω) 4.4.3 How to find H( j ω) 4.4.4 System frequency characteristics 4.4.5 Application examples 4.5 Signal transmission distortion and distortion-free transmission conditions 4.5.1 Signal transmission distortion 4.5.2 Signal without distortion Transmission and its conditions 4.5.3 Group delay 4.5.4 Types of signal distortion 4.6 Ideal low-pass filter and its response 4.6.1 Ideal low-pass filter and its frequency characteristics 4.6.2 Impulse response of the ideal low-pass filter 4.6.3 Step response of ideal low-pass filter 4.6.4 Rectangular impulse response of ideal low-pass filter 4.6.5 Physical realizability of the system and Paley-Wiener criterion 4.7 Sampling signal and sampling theorem 4.7.1 Limit Band signal and sampled signal 4.7.2 Spectrum of sampled signal fs (t) 4.7.3 Time domain sampling theorem 4.7.4 Frequency domain sampling theorem 4.8 Modulation and demodulation 4.8.1 Modulation 4.8.2 Demodulation 4.8.3 Effect of amplitude modulation signal Exercise 4 on Linear Systems Chapter 5 Complex Frequency Domain Analysis of Continuous Systems 5.1 Laplace Transform 5.1.1 From Fourier Transform to Laplace Transform 5.1.2 Conditions and Convergence Region of Laplace Transform 5.1 .3 Basic properties of Laplace transform 5.1.4 Inverse Laplace transform 5.2 Kirchhoff’s law and the complex frequency domain form of circuit components 5.2.1 The complex frequency domain form of Kirchhoff’s law 5.2.2 Circuit Complex frequency domain form of component volt-ampere relationship 5.2.3 Ohm\'s law in complex frequency domain form 5.3 Complex frequency domain analysis method of linear system 5.4 Relationship between Laplace transform and Fourier transform Exercise 5 Chapter 6 Complex frequency domain system function and system simulation 6.1 Complex frequency domain system function and its zero and pole diagram 6.1.1 Complex frequency domain system function 6.1.2 Zero and pole diagram 6.2 Application of system function 6.2.1 Find unit impulse response h(t) 6.2.2 Study the influence of the zero and pole distribution of H(s) on h(t) 6.2.3 Judge the stability of the system based on the pole distribution of H(s) 6.2.4 The differential equation of the system can be written based on H(s) 6.2. 5 According to the given or obtained initial value of the system, find the zero-input response yx(t) of the system from the pole of H(s) 6.2.6 Find the zero-state response yf( t) 6.2.7 Find the frequency characteristics (ie frequency response) H(j ω) of the system 6.2.8 Find the sinusoidal steady-state response ys(t) of the system 6.3 Simulation diagram and block diagram of the continuous system 6.3.1 Three types of operators 6.3 .2 Definition of system simulation and system simulation diagram 6.3.3 Commonly used simulation diagram forms 6.3.4 System block diagram 6.4 Signal flow diagram of continuous system and Mason\'s formula 6.4.1 Definition of signal flow diagram 6.4.2 Three types of operators Signal flow diagram representation 6.4.3 Mutual conversion rules between simulation diagrams and signal flow diagrams 6.4.4 Terminology of signal flow diagrams 6.4.5 Mason\'s Formula 6.5 Stability and judgment of continuous systems 6.5.1 System stability The significance of sex 6.5.2 Determination of system stability Exercise 6 Chapter 7 Discrete signals and system time domain analysis 7.0 Introduction 7.1 Discrete signals 7.1.1 Discrete time signals and their description 7.1.2 Energy and power of discrete signals 7.2 Discrete time signals Time domain operations 7.2.1 Addition and multiplication 7.2.2 Multiplication and inversion 7.2.3 Shift and deconvolution 7.2.4 Scale transformation (k coordinate expansion) 7.2.5 Difference and accumulation 7.3 Commonly used discrete time signals 7.3 .1 Unit sequence δ (k) 7.3.2 Unit step sequence U(k) 7.3.3 Unit rectangular sequence (gate sequence) GN(k) 7.3.4 One-sided real exponential sequence 7.3.5 Sine sequence 7.3.6 Discrete complex exponential signal 7.4 Discrete system and its mathematical description 7.4.1 Linear time-invariant discrete time system 7.4.2 Model of discrete time system 7.5 Time domain classical analysis of discrete time system 7.5.1 Solution of difference equation 7.5.2 Zero input response and zero state response 7.6 Unit sequence of discrete system Response 7.6.1 Iterative method 7.6.2 Equivalent initial value method 7.6.3 Transfer operator method 7.7 Convolution sum analysis of discrete systems 7.7.1 Time domain decomposition of discrete time signals 7.7.2 Convolution sum 7.7.3 Discrete time System Convolution and Analysis Exercise 7 Chapter 8 Discrete Signal and System Z Domain Analysis 8.1 Z Transform of Discrete Signal 8.1.1 Definition of Z Transform 8.1.2 Convergence Region 8.1.3 Common Sequence Z Transform 8.1.4 Z Transform and Lapp The connection of Russ transform 8.2 Basic properties of Z transform 8.2.1 Linearity 8.2.2 Shift property 8.2.3 Z domain scale transformation 8.2.4 Z domain differential property 8.2.5 Z domain integral property 8.2.6 Time domain folding property 8.2 .7 Time domain convolution theorem 8.2.8 Part and 8.2.9 Initial value theorem 8.2.10 Final value theorem 8.3 Inverse Z transformation 8.3.1 Power series expansion method 8.3.2 Partial fraction expansion method 8.3.3 Inversion integral Method (residue method) 8.4 Use Z transformation to solve the response of discrete systems 8.4.1 Z domain solution for zero input response 8.4.2 Z domain solution for zero state response 8.4.3 Z domain solution for full response 8.5 Z domain system function H (z) 8.5.1 Definition of H(z) 8.5.2 Physical meaning of H(z) 8.5.3 Method of finding H(z) 8.5.4 Application of H(z) 8.6 Zero and pole distribution of H(z) Impact on system characteristics 8.6.1 The unit sequence response characteristics are determined by the distribution of H(z) zeros and poles 8.6.2 The distribution of H(z) zeros and poles and the causality and stability of the system 8.6.3 H(z) zero , pole distribution and system frequency characteristics 8.6.4 H (z) and the sinusoidal steady-state response of the system 8.7 Use the Juli criterion to judge the stability of the discrete system 8.8 Fourier transform of the discrete time series 8.8.1 Definition 8.8.2 Discrete time Fourier transform Common Properties of Liye Transform Exercise 8 Chapter 9 State Variable Method 9.1 Basic Concepts and Definitions 9.2 Establishment of State Equation and Output Equation of Continuous System 9.2.1 Intuitively Written by Circuit Diagram 9.2.2 Single Input Single Output System State Equation and Output Equation 9.2.3 List of state equations and output equations of multi-input and multiple output systems 9.3 S-domain solution of state equations and output equations of continuous systems 9.3.1 S-domain solution of state equations 9.3.2 S-domain solution of output equations and Transfer function matrix H(s) 9.3.3 Physical meaning of transfer function matrix H(s) 9.3.4 Eigenvalues ​​of matrix A and natural frequency of the system 9.4 Time domain solution of continuous system state equation and output equation 9.4.1 State equation Time domain solution of 9.4.2 Convolution of matrix function and solution of e A t 9.4.3 Time domain solution of output equation and unit impulse response matrix h(t) 9.4.4 State transition matrix φ(t) = e A Properties of t*9.5 State space and state trajectory 9.5.1 State space 9.5.2 State trajectory 9.6 Analysis of state variables of discrete systems 9.6.1 Listing of state equations and output equations 9.6.2 Z-domain solution of state equations and output equations 9.6 .3 Eigenvalues ​​of matrix A and natural frequencies of the system 9.6.4 Time domain solutions of the state equation and output equation 9.7 Determining the stability of the system from the state equation 9.7.1 Determining the stability of the continuous time system 9.7.2 Stability of the discrete time system Judgment Exercise 9 Exercise Answers References 

unfold

You Might Like

Uploader
sigma
 

Recommended ContentMore

Popular Components

Just Take a LookMore

EEWorld
subscription
account

EEWorld
service
account

Automotive
development
circle

About Us Customer Service Contact Information Datasheet Sitemap LatestNews


Room 1530, 15th Floor, Building B, No.18 Zhongguancun Street, Haidian District, Beijing, Postal Code: 100190 China Telephone: 008610 8235 0740

Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved 京ICP证060456号 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号
×