zip

A review of face image data dimensionality reduction methods based on graph theory

  • 2014-01-08
  • 900.44KB
  • Points it Requires : 2

In recent years, the dimensionality reduction methods based on graph theory have attracted more and more attention. Aiming at the core problem of face recognition, namely the dimensionality reduction of high-dimensional data, this paper first introduces the basic concepts of graph theory, summarizes various methods of face image dimensionality reduction, and unifies these methods into the graph embedding framework. Then, the advantages and disadvantages of various algorithms are analyzed from the perspective of linear and nonlinear, and it is concluded that nonlinear graph embedding algorithms are superior to traditional methods in mining nonlinear features in face images and in data dimensionality reduction. Finally, the future research and development directions are discussed in view of the problems existing in the existing composition methods.

unfold

You Might Like

Uploader
nkyqsl
 

Recommended ContentMore

Popular Components

Just Take a LookMore

EEWorld
subscription
account

EEWorld
service
account

Automotive
development
circle

About Us Customer Service Contact Information Datasheet Sitemap LatestNews


Room 1530, 15th Floor, Building B, No.18 Zhongguancun Street, Haidian District, Beijing, Postal Code: 100190 China Telephone: 008610 8235 0740

Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved 京ICP证060456号 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号
×