zip

Fault diagnosis based on support vector machine based on fruit fly optimization algorithm

  • 2013-09-22
  • 791.26KB
  • Points it Requires : 2

A support vector machine feature selection and parameter optimization algorithm based on fruit fly optimization is proposed. It imitates the foraging behavior of fruit flies, takes the taste concentration judgment value of food as a parameter, and encodes the feature set into binary code to obtain a feature subset for training the model. Then, a suitable fitness function is constructed to search for the optimal parameter value and feature subset. Experimental comparison with other algorithms shows that this method has the advantages of high classification accuracy and strong global search ability. It is applied to the fault diagnosis of rolling bearings, and the simulation results show that the model has good performance.

unfold

You Might Like

Uploader
jujuyaya222
 

Recommended ContentMore

Popular Components

Just Take a LookMore

EEWorld
subscription
account

EEWorld
service
account

Automotive
development
circle

About Us Customer Service Contact Information Datasheet Sitemap LatestNews


Room 1530, 15th Floor, Building B, No.18 Zhongguancun Street, Haidian District, Beijing, Postal Code: 100190 China Telephone: 008610 8235 0740

Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved 京ICP证060456号 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号
×