pdf

Improvement of crossover strategy in genetic algorithm

  • 2013-09-19
  • 171.39KB
  • Points it Requires : 2

An improved genetic algorithm is proposed, which introduces an adaptive adjustment mechanism for sorting selection pressure to ensure that the selection pressure is dynamically adjusted as the population traits change, and a new competitive selection crossover strategy is used to improve the average performance of individuals in the population. Typical test functions are selected for simulation, and the results show that the algorithm has greatly improved the optimization accuracy and convergence speed compared with the original algorithm, and the convergence probability is over 90%. Keywords: genetic algorithm; sorting selection; crossover strategy

unfold

You Might Like

Uploader
jasionla
 

Recommended ContentMore

Popular Components

Just Take a LookMore

EEWorld
subscription
account

EEWorld
service
account

Automotive
development
circle

About Us Customer Service Contact Information Datasheet Sitemap LatestNews


Room 1530, 15th Floor, Building B, No.18 Zhongguancun Street, Haidian District, Beijing, Postal Code: 100190 China Telephone: 008610 8235 0740

Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved 京ICP证060456号 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号
×