pdf

Research and simulation of PID controller based on BP neural network algorithm

  • 2012-12-21
  • 702.66KB
  • Points it Requires : 2

In this paper, the principle of BP neural network is applied to the parameter identification process, combined with the traditional PID control algorithm to form an improved BP neural network PID control algorithm. This algorithm uses BP neural network to establish a system parameter model, which can track the changes of the controlled object and achieve higher identification accuracy. In view of the shortcomings of BP neural network that is sensitive to the initial value of the weight system, the initial weight coefficient of BP neural network is optimized. The BP network\'s own weight coefficient is corrected by BP algorithm to achieve online adjustment of PID parameters. The simulation results show that the algorithm has fast convergence speed, high accuracy, strong robustness and good stability, indicating the feasibility and effectiveness of the algorithm.

unfold

You Might Like

Uploader
Timson
 

Recommended ContentMore

Popular Components

Just Take a LookMore

EEWorld
subscription
account

EEWorld
service
account

Automotive
development
circle

About Us Customer Service Contact Information Datasheet Sitemap LatestNews


Room 1530, 15th Floor, Building B, No.18 Zhongguancun Street, Haidian District, Beijing, Postal Code: 100190 China Telephone: 008610 8235 0740

Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved 京ICP证060456号 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号
×