pdf

Theory and Application of Multi-source Information Fusion

  • 2023-02-09
  • 115.3MB
  • Points it Requires : 2

This book is a textbook on the theory and application of multi-source information fusion. The main contents include the basic concepts and development process of multi-source information fusion, the theoretical basis of estimation, the mathematical basis of information fusion, detection fusion, estimation fusion, target tracking, data association, target recognition fusion, image fusion, integrated navigation and information fusion, situation estimation, threat estimation, performance evaluation in information fusion, and experiments related to the textbook content. Exercises are attached at the end of each chapter for students to practice after class and consolidate their knowledge. [1] This book can be used as a textbook for undergraduate and graduate students of various related majors in control science and engineering in colleges and universities, and can also be used as a reference book for researchers in related majors such as information fusion, electronic countermeasures, information processing and system engineering, and teachers and students in colleges and universities. Chapter 1 Introduction 1.1 General concept of multi-source information fusion 1.1.1 Proposal and definition of multi-source information fusion 1.1.2 Advantages of multi-source information fusion 1.2 Functional model of multi-source information fusion 1.2.1 Classical functional model 1.2.2 Other functional models 1.3 System structure of multi-source information fusion 1.3.1 Centralized structure 1.3.2 Distributed structure 1.3.3 Hybrid structure 1.4 Mathematical methods in multi-source information fusion 1.4.1 Estimation theory and method 1.4.2 Uncertainty reasoning method 1.4.3 Intelligent computing and pattern recognition theory 1.5 Development process and research status of multi-source information fusion 1 .6 Applications of Multi-Source Information Fusion 1.6.1 Civilian Applications 1.6.2 Military Applications Exercises References Chapter 2 Estimation Theory 2.1 Estimation Criteria 2.1.1 Least Squares Estimation and Weighted Least Squares Estimation 2.1.2 Minimum Variance Estimation and Linear Minimum Variance Estimation 2.1.3 Maximum Likelihood Estimation and Maximum A Posteriori Estimation 2.2 Optimal Bayesian Filtering 2.3 State Filtering for Linear Dynamic Systems 2.3.1 Kalman Filter 2.3.2 Information Filter 2.4 State Filtering for Nonlinear Dynamic Systems 2.4.1 Extended Kalman Filter 2.4.2 Strong Tracking Filter 2.4.3 UT Transform and UKF 2.4.4 Difference filter 2.4.5 Particle filter 2.5 Multi-model estimation for hybrid systems 2.5.1 General description 2.5.2 Implementation of multi-model estimation 2.5.3 Fixed-structure multi-model estimation 2.5.4 Interactive multi-model algorithm 2.5.5 Variable-structure multi-model algorithm 2.6 Expectation-maximization method 2.6.1 Overview 2.6.2 EM algorithm description 2.6.3 EM algorithm for parameter estimation of mixed Gaussian mixtures Example Exercises References Chapter 3 Uncertainty Reasoning Theory 3.1 Subjective Bayesian method 3.1.1 Bayesian conditional probability formula 3.1.2 Application of Bayesian method in information fusion 3.1.3 Advantages and disadvantages of subjective Bayesian method 3.2 D-S evidence reasoning 3.2.1 Basic concepts of evidence theory 3.2.2 Combination rules of evidence theory 3.2.3 Decision-making based on evidence theory 3.2.4 Advantages and disadvantages of evidence theory 3.3 Uncertainty reasoning method 3 - DSmT 3.3.1 Basic concepts of DSmT 3.3.2 Combination rules of DSmT 3.3.3 Advantages and disadvantages of DSmT 3.4 Comparison of subjective Bayesian method, DS evidence theory and DSmT 3.5 Fuzzy set theory [2] 3.5.1 Fuzzy sets and membership degree 3.5.2 Fuzzy clustering 3.6 Fuzzy logic 3.7 Fuzzy reasoning 3.8 Fuzzy integral 3.9 Possibility theory Exercises References Chapter 4 Other mathematical foundations of information fusion 4.1 Rough set theory 4.1.1 Basic concepts 4.1.2 Application of rough set theory in information fusion 4.2 Random set theory 4.2.1 General concepts 4.2.2 Probability model 4.2.3 Mass function model of random set 4.3 Grey system theory 4.3.1 Two basic principles of grey system theory 4.3.2 Data transformation technology 4.4 Support vector machine theory 4.4.1 Optimal classification hyperplane 4.4.2 Optimal classification surface for linearly separable 4.4.3 Optimal classification surface for linearly inseparable 4.4 .4 Nonlinear Support Vector Machine 4.5 Information Entropy Theory 4.5.1 Concept of Entropy 4.5.2 Information Fusion Problem of Observation System 4.5.3 Information Fusion Problem of Observation-Decision Fusion System 4.5.4 Structural Relationship of Entropy of Fusion System 4.6 Neural Network 4.6.1 Artificial Neuron Model 4.6.2 Activation Function of Neural Network 4.6.3 Structure of Neural Network 4.6.4 Learning Method of Neural Network 4.7 Genetic Algorithm 4.7.1 Basic Process of Genetic Algorithm 4.7.2 Coding Method 4.7.3 Fitness Function 4.7.4 Selection Operator 4.7.5 Crossover Operator 4.7.6 Mutation Operator 4.8 Basics of Bayesian Network 4.8.1 General Concept of Bayesian Network 4.8.2 Independence Assumption 4 .8.3 Consistency Probability 4.8.4 Bayesian Network Inference Exercises References Chapter 5 Detection Fusion 5.1 Introduction 5.2 Hypothesis Testing 5.2.1 Description of the Hypothesis Testing Problem 5.2.2 Likelihood Ratio Decision Criterion 5.3 Detection Fusion Structure Model 5.3.1 Centralized Fusion Detection Structure 5.3.2 Distributed Fusion Detection Structure 5.4 Distributed Detection Fusion Based on Parallel Structure 5.4.1 Parallel Distributed Fusion Detection System Structure 5.4.2 Parallel Distributed Optimal Detection 5.5 Distributed Detection Fusion Based on Serial Structure 5.5.1 Serial Distributed Fusion Detection System Structure 5.5.2 Serial Distributed Optimal Detection 5.6 Tree-Shaped Distributed Detection Fusion 5.6.1 Tree-Shaped Distributed Fusion Detection System Structure 5.6.2 Tree-structured distributed optimal detection 5.7 Distributed detection fusion in feedback networks 5.7.1 Fusion and local decision rules of feedback parallel networks 5.7.2 System performance description 5.7.3 Application examples of parallel feedback networks 5.8 Distributed constant false alarm probability detection 5.8.1 CFAR detection 5.8.2 Distributed CFAR detection Exercises References Chapter 6 Estimation fusion 6.1 Estimation fusion system structure 6.2 Mathematical model of multi-sensor system 6.2.1 Linear system 6.2.2 Nonlinear system 6.3 Centralized fusion system 6.3.1 Parallel filtering 6.3.2 Sequential filtering 6.4 Distributed estimation fusion 6.4.1 Distributed estimation fusion without feedback information 6.4.2 Distributed fusion with feedback information [2] 6.4.3 Full Information Estimation Fusion 6.5 Distributed Data Fusion Based on Covariance Intersection 6.5.1 Problem Description 6.5.2 Optimal Fusion of Correlated Estimators with Known Correlation 6.5.3 Optimal Fusion of Correlated Estimators with Unknown Correlation 6.6 Hybrid Estimation Fusion 6.6.1 Sequential Estimation 6.6.2 Weighted Estimation 6.7 Multi-stage Estimation Fusion 6.7.1 Multi-stage Estimation Fusion without Feedback Information 6.7.2 Multi-stage Estimation Fusion with Feedback Information 6.8 Federated Filter 6.8.1 Problem Description 6.8.2 Variance Upper Bounding Technique 6.8.3 General Structure of Federated Filter 6.8.4 Workflow of Federated Filter 6.8.5 Proof of Optimality of Federated Filter 6.9 Asynchronous Estimation Fusion 6.9.1 System Equation Description 6.9.2 Centralized Asynchronous Estimation Fusion 6.9.3 Distributed Asynchronous Estimation Fusion Exercises References Chapter 7 Recognition Fusion 7.1 Overview of target recognition fusion 7.2 Target recognition fusion technology based on fuzzy set theory 7.2.1 Recognition method based on fuzzy proximity and uncertainty theory 7.2.2 Recognition model based on possibility theory 7.2.3 Target recognition based on multi-attribute fuzzy weighting method 7.2.4 Target recognition based on fuzzy comprehensive function 7.3 Target recognition fusion theory based on rough set theory 7.3.1 Relational data model 7.3.2 Establishing knowledge system 7.3.3 Weight determination method based on rough set theory 7.3.4 Classification rules based on decision table 7.4 Target recognition fusion technology based on DS evidence theory 7.4.1 Recursive target recognition fusion of mutually incompatible data structures 7.4.2 Recursive target recognition spatial fusion of compatible data structures 7.5 Target recognition fusion technology based on grey system theory 7.5.1 Grey relational analysis recognition fusion algorithm [12] 7.5.2 Grey relational analysis fusion method based on DS reasoning 7.6 Target recognition fusion technology based on maximum a posteriori probability theory 7.7 Target recognition fusion technology based on DSmT theory 7.7.1 DSmT fusion process 7.7.2 Recursive target recognition fusion 7.8 Target recognition fusion technology based on attribute measurement theory 7.8.1 Basic theory of attribute measurement 7.8.2 Attribute pattern recognition model with known index classification standard 7.8.3 Attribute measurement model of non-ordered segmentation class 7.8.4 Fusion recognition method combining attribute measurement with DS evidence theory Exercises References Chapter 8 Image fusion 8.1 Overview of image fusion 8.1.1 Concept of image fusion 8.1.2 Development of image fusion 8.1.3 Application of image fusion 8.2 Classification of image fusion 8.2.1 Pixel level image fusion 8.2.2 Feature level image fusion 8.2.3 Decision level image fusion 8.3 Image registration 8.3.1 Basic concepts of registration 8.3.2 Problems that need to be solved in registration [2] 8.3.3 Registration algorithm 8.3.4 Transformation model and registration parameter estimation method 8.3.5 Image resampling and transformation 8.4 Image fusion algorithm 8.4.1 Image fusion based on Bayesian method 8.4.2 Image fusion based on statistical measurement optimization 8.4.3 Image fusion based on ICA 8.4.4 Image fusion based on wavelet transform 8.5 Application of image fusion 8.5.1 Remote sensing image fusion 8.5.2 Biometric recognition technology Exercises References Chapter 9 Time and space alignment 9.1 Problem description 9.2 Time alignment 9.2.1 Time synchronization technology 9.2.2 Time registration technology 9.3 Coordinate transformation 9.3.1 Common coordinate systems 9.3.2 Selection of coordinate systems 9.3.3 Coordinate transformation 9.4 Spatial registration algorithm 9.5 Dimensional alignment Exercises References Chapter 10 Target tracking 10.1 Basic concepts and principles of target tracking 10.1.1 Formation of tracking gates 10.1.2 Data association and track maintenance 10.1.3 Track initiation and termination 10.1.4 Missed reports and false alarms 10.2 Tracking gates 10.2.1 Circular tracking gates 10.2.2 Elliptical (spherical) tracking gates 10.2.3 Rectangular tracking gates 10.2.4 Sector tracking gates 10.3 Track initiation 10.3.1 Track initiation algorithm 10.3.2 Discussion of relevant issues in track initiation 10.4 Target tracking model 10.4.1 Motion model 10.4.2 Measurement model 10.5 Target tracking algorithm 10.5.1 Multi-target tracking based on random finite sets 10.5.2 Maneuvering multi-target tracking based on IMM 10.5.3 Maneuvering target tracking based on expectation maximization algorithm 10.5.4 Target tracking technology based on fuzzy reasoning 10.6 Track termination and track management 10.6.1 Multi-target tracking termination theory 10.6.2 Track management [2] 10.6.3 Summary Exercises References Chapter 11 Data Association 11.1 Single Target Measurement - Track Association Algorithm 11.1.1 Nearest Neighbor Method 11.1.2 Probabilistic Data Association 11.1.3 Interactive Multi-Model Probabilistic Data Association 11.1.4 C-IMMPDA Algorithm 11.1.5 Comprehensive Extended Probabilistic Data Association Algorithm 11.2 Multi-Target Measurement - Track Association Algorithm 11.2.1 Joint Probabilistic Data Association 11.2.2 Multiple Hypothesis Method 11.2.3 Probabilistic Multiple Hypothesis Method 11.2.4 Multi-Dimensional Distribution Data Association Algorithm 11.2.5 Global Nearest Neighbor Data Association Algorithm 11.2.6 Single Sensor Generalized Probabilistic Data Association Algorithm 11.2.7 Multi-Sensor Generalized Probabilistic Data Association Algorithm 11.2.8 VDA Algorithm 11.3 Distributed Track Association 11.3.1 Distributed Track Association Based on Statistics 11.3.2 Track Association Based on Fuzzy Reasoning and Grey Theory Exercises References Chapter 12 Integrated Navigation and Information Fusion 12.1 Overview of Navigation System 12.1.1 Inertial Navigation System 12.1.2 Global Satellite Navigation System 12.1.3 Scene Matching Navigation System 12.1.4 Other Navigation Systems 12.1.5 Integrated Navigation System 12.2 Vehicle-mounted GPS/INS/EC Integrated Navigation 12.2.1 System Hardware and Software Structure 12.2.2 Integrated Navigation Estimation Fusion Model 12.2.3 Experimental Results 12.3 Suborbital Vehicle GPS/INS/CNS Integrated Navigation 12.3.1 Overview of Suborbital Vehicle 12.3.2 Analysis of Suborbital Vehicle Flight Characteristics 12.3.3 Blackout Problem 1 2.3.4 Navigation System Design 12.3.5 Fusion Structure Design 12.3.6 Simulation Analysis 12.4 UAV INS/SMNS Integrated Navigation 12.4.1 INS/SMNS Combination Mode 12.4.2 Tightly Coupled INS/SMNS Navigation Characteristics 12.4.3 Experimental Results and Analysis Exercises References Chapter 13 Situation Assessment and Threat Estimation 13.1 Concept of Situation Assessment 13.2 Implementation of Situation Assessment 13.2.1 Situation Prediction 13.2.2 Situation Association 13.2.3 Situation Assessment 13.3 Situation Assessment Method 13.3.1 Situation Assessment Method Based on Fuzzy Clustering 13.3.2 Situation Assessment Based on Bayesian Network 13.3.3 Situation Assessment Based on Markov Model 13.3.4 Situation Assessment Method Based on Joint Fuzzy Logic and Bayesian 13.3.5 Others 13.4 Concept of threat estimation 13.4.1 Definition of threat estimation 13.4.2 Functional model of threat estimation 13.4.3 Main contents of threat estimation 13.5 Knowledge base in threat estimation 13.5.1 Domain knowledge of the system 13.5.2 Knowledge representation of the system 13.5.3 Imprecise reasoning in the system 13.5.4 Establishment of system knowledge base 13.6 Threat estimation based on analytic hierarchy process 13.6.1 Steps for judging threat level 13.6.2 Factors affecting target threat level and establishment of judgment function 13.6.3 Determination of weight coefficients of each factor 13.6.4 Determination of comprehensive evaluation results 13.7 Threat estimation based on multi-factor comprehensive weighting 13.7.1 Basic principle of multi-factor comprehensive weighting method [2] 13.7.2 Application Exercises of Multi-factor Comprehensive Weighted Method References Chapter 14 Performance Evaluation in Information Fusion 14.1 Performance Evaluation Index System 14.1.1 Characteristics of Index System and Selection Principles 14.1.2 Index Types 14.1.3 Plot Setting 14.1.4 Evaluation Index 14.2 Methods of Information Fusion Performance Evaluation 14.2.1 Analytical Method for Information Fusion Performance Evaluation 14.2.2 Monte Carlo Method for Information Fusion Performance Evaluation 14.2.3 Semi-physical Simulation Method for Information Fusion Performance Evaluation 14.2.4 Experimental Verification Method for Information Fusion Performance Evaluation 14.3 Performance Evaluation Examples 14.3.1 Performance Evaluation and Index System of Tracking System 14.3.2 Performance Evaluation of Image Fusion Technology 14.3.3 Index System for Measures of Effectiveness (MOE) 14.4 Other Performance Evaluation Examples 14.4.1 Performance Evaluation of Radar and Infrared Sensor Track Correlation Based on Analytical Method 14.4.2 Performance Evaluation of Track Initiation Based on Analytical Method 14.4.3 Performance Evaluation of Track Initiation Based on Monte Carlo Simulated Radar Network Altitude Estimation Performance Evaluation Exercises References Chapter 15 Sensor Management 15.1 Sensor Management in Information Fusion 15.2 Overview of Sensor Management 15.2.1 Concept of Sensor Management 15.2.2 Contents of Sensor Management 15.2.3 Commonly Used Sensors and Their Manageable Parameters and Modes 15.3 System Structure and Functional Model of Sensor Management 15.3.1 System Structure of Sensor Management 15.3.2 Functional Model of Sensor Management 15.4 Sensor Management Algorithm and Performance Index System 15.4.1 Introduction to Sensor Management Algorithm 15.4.2 Sensor Management Performance Index System 15.5 Airborne Multisensor with Restricted Working Environment Sensor Management 15.5.1 Optimal Decision Model for Sensor Management with Constrained State Variables 15.5.2 A Active/Passive Sensor Management Scheme and Algorithm in a Battlefield Environment 15.6 Multi-factor Single-platform Sensor Management Algorithm Based on Fuzzy Reasoning 15.6.1 Sensor Management Considering Multiple Target Factors 15.6.2 Sensor Management Based on Fuzzy Reasoning 15.6.3 Simulation Study 15.7 Multi-platform Sensor Network Management Based on Joint Information Increment 15.7.1 Joint Information Increment in Multi-sensor Multi-target Tracking 15.7.2 Centralized Network-level Sensor Management Algorithm Based on Joint Information Increment 15.7.3 Simulation Study Exercises References4.2 Image Fusion Based on Statistical Measurement Optimization 8.4.3 Image Fusion Based on ICA 8.4.4 Image Fusion Based on Wavelet Transform 8.5 Applications of Image Fusion 8.5.1 Remote Sensing Image Fusion 8.5.2 Biometric Recognition Technology Exercises References Chapter 9 Time and Space Alignment 9.1 Problem Description 9.2 Time Alignment 9.2.1 Time Synchronization Technology 9.2.2 Time Registration Technology 9.3 Coordinate Transformation 9.3.1 Common Coordinate Systems 9.3.2 Selection of Coordinate Systems 9.3.3 Coordinate Transformation 9.4 Spatial Registration Algorithms 9.5 Dimensional Alignment Exercises References Chapter 10 Target Tracking 10.1 Basic Concepts and Principles of Target Tracking 10.1.1 Formation and Selection of Tracking Gates 10.1.2 Data Association and Tracking Maintenance 10.1.3 Track Start and End 10. 1.4 Missed Alarms and False Alarms 10.2 Tracking Gates 10.2.1 Circular Tracking Gates 10.2.2 Elliptical (Spherical) Tracking Gates 10.2.3 Rectangular Tracking Gates 10.2.4 Sector Tracking Gates 10.3 Track Initiation 10.3.1 Track Initiation Algorithm 10.3.2 Discussion of Related Issues in Track Initiation 10.4 Target Tracking Model 10.4.1 Motion Model 10.4.2 Measurement Model 10.5 Target Tracking Algorithm 10.5.1 Multi-target Tracking Based on Random Finite Sets 10.5.2 Maneuvering Multi-target Tracking Based on IMM 10.5.3 Maneuvering Target Tracking Based on Expectation Maximization Algorithm 10.5.4 Target Tracking Technology Based on Fuzzy Reasoning 10.6 Track Termination and Track Management 10.6.1 Multi-target Tracking Termination Theory 10.6.2 Track Management [2] 10.6.3 Summary Exercises References Chapter 11 Data Association 11.1 Single Target Measurement - Track Association Algorithm 11.1.1 Nearest Neighbor Method 11.1.2 Probabilistic Data Association 11.1.3 Interactive Multi-Model Probabilistic Data Association 11.1.4 C-IMMPDA Algorithm 11.1.5 Comprehensive Extended Probabilistic Data Association Algorithm 11.2 Multi-Target Measurement - Track Association Algorithm 11.2.1 Joint Probabilistic Data Association 11.2.2 Multiple Hypothesis Method 11.2.3 Probabilistic Multiple Hypothesis Method 11.2.4 Multi-Dimensional Distribution Data Association Algorithm 11.2.5 Global Nearest Neighbor Data Association Algorithm 11.2.6 Single Sensor Generalized Probabilistic Data Association Algorithm 11.2.7 Multi-Sensor Generalized Probabilistic Data Association Algorithm 11.2.8 VDA Algorithm 11.3 Distributed Track Association 11.3.1 Distributed Track Association Based on Statistics 11.3.2 Track Association Based on Fuzzy Reasoning and Grey Theory Exercises References Chapter 12 Integrated Navigation and Information Fusion 12.1 Overview of Navigation System 12.1.1 Inertial Navigation System 12.1.2 Global Satellite Navigation System 12.1.3 Scene Matching Navigation System 12.1.4 Other Navigation Systems 12.1.5 Integrated Navigation System 12.2 Vehicle-mounted GPS/INS/EC Integrated Navigation 12.2.1 System Hardware and Software Structure 12.2.2 Integrated Navigation Estimation Fusion Model 12.2.3 Experimental Results 12.3 Suborbital Vehicle GPS/INS/CNS Integrated Navigation 12.3.1 Overview of Suborbital Vehicle 12.3.2 Analysis of Suborbital Vehicle Flight Characteristics 12.3.3 Blackout Problem 1 2.3.4 Navigation System Design 12.3.5 Fusion Structure Design 12.3.6 Simulation Analysis 12.4 UAV INS/SMNS Integrated Navigation 12.4.1 INS/SMNS Combination Mode 12.4.2 Tightly Coupled INS/SMNS Navigation Characteristics 12.4.3 Experimental Results and Analysis Exercises References Chapter 13 Situation Assessment and Threat Estimation 13.1 Concept of Situation Assessment 13.2 Implementation of Situation Assessment 13.2.1 Situation Prediction 13.2.2 Situation Association 13.2.3 Situation Assessment 13.3 Situation Assessment Method 13.3.1 Situation Assessment Method Based on Fuzzy Clustering 13.3.2 Situation Assessment Based on Bayesian Network 13.3.3 Situation Assessment Based on Markov Model 13.3.4 Situation Assessment Method Based on Joint Fuzzy Logic and Bayesian 13.3.5 Others 13.4 Concept of threat estimation 13.4.1 Definition of threat estimation 13.4.2 Functional model of threat estimation 13.4.3 Main contents of threat estimation 13.5 Knowledge base in threat estimation 13.5.1 Domain knowledge of the system 13.5.2 Knowledge representation of the system 13.5.3 Imprecise reasoning in the system 13.5.4 Establishment of system knowledge base 13.6 Threat estimation based on analytic hierarchy process 13.6.1 Steps for judging threat level 13.6.2 Factors affecting target threat level and establishment of judgment function 13.6.3 Determination of weight coefficients of each factor 13.6.4 Determination of comprehensive evaluation results 13.7 Threat estimation based on multi-factor comprehensive weighting 13.7.1 Basic principle of multi-factor comprehensive weighting method [2] 13.7.2 Application Exercises of Multi-factor Comprehensive Weighted Method References Chapter 14 Performance Evaluation in Information Fusion 14.1 Performance Evaluation Index System 14.1.1 Characteristics of Index System and Selection Principles 14.1.2 Index Types 14.1.3 Plot Setting 14.1.4 Evaluation Index 14.2 Methods of Information Fusion Performance Evaluation 14.2.1 Analytical Method for Information Fusion Performance Evaluation 14.2.2 Monte Carlo Method for Information Fusion Performance Evaluation 14.2.3 Semi-physical Simulation Method for Information Fusion Performance Evaluation 14.2.4 Experimental Verification Method for Information Fusion Performance Evaluation 14.3 Performance Evaluation Examples 14.3.1 Performance Evaluation and Index System of Tracking System 14.3.2 Performance Evaluation of Image Fusion Technology 14.3.3 Index System for Measures of Effectiveness (MOE) 14.4 Other Performance Evaluation Examples 14.4.1 Performance Evaluation of Radar and Infrared Sensor Track Correlation Based on Analytical Method 14.4.2 Performance Evaluation of Track Initiation Based on Analytical Method 14.4.3 Performance Evaluation of Track Initiation Based on Monte Carlo Simulated Radar Network Altitude Estimation Performance Evaluation Exercises References Chapter 15 Sensor Management 15.1 Sensor Management in Information Fusion 15.2 Overview of Sensor Management 15.2.1 Concept of Sensor Management 15.2.2 Contents of Sensor Management 15.2.3 Commonly Used Sensors and Their Manageable Parameters and Modes 15.3 System Structure and Functional Model of Sensor Management 15.3.1 System Structure of Sensor Management 15.3.2 Functional Model of Sensor Management 15.4 Sensor Management Algorithm and Performance Index System 15.4.1 Introduction to Sensor Management Algorithm 15.4.2 Sensor Management Performance Index System 15.5 Airborne Multisensor with Restricted Working Environment Sensor Management 15.5.1 Optimal Decision Model for Sensor Management with Constrained State Variables 15.5.2 A Active/Passive Sensor Management Scheme and Algorithm in a Battlefield Environment 15.6 Multi-factor Single-platform Sensor Management Algorithm Based on Fuzzy Reasoning 15.6.1 Sensor Management Considering Multiple Target Factors 15.6.2 Sensor Management Based on Fuzzy Reasoning 15.6.3 Simulation Study 15.7 Multi-platform Sensor Network Management Based on Joint Information Increment 15.7.1 Joint Information Increment in Multi-sensor Multi-target Tracking 15.7.2 Centralized Network-level Sensor Management Algorithm Based on Joint Information Increment 15.7.3 Simulation Study Exercises References4.2 Image Fusion Based on Statistical Measurement Optimization 8.4.3 Image Fusion Based on ICA 8.4.4 Image Fusion Based on Wavelet Transform 8.5 Applications of Image Fusion 8.5.1 Remote Sensing Image Fusion 8.5.2 Biometric Recognition Technology Exercises References Chapter 9 Time and Space Alignment 9.1 Problem Description 9.2 Time Alignment 9.2.1 Time Synchronization Technology 9.2.2 Time Registration Technology 9.3 Coordinate Transformation 9.3.1 Common Coordinate Systems 9.3.2 Selection of Coordinate Systems 9.3.3 Coordinate Transformation 9.4 Spatial Registration Algorithms 9.5 Dimensional Alignment Exercises References Chapter 10 Target Tracking 10.1 Basic Concepts and Principles of Target Tracking 10.1.1 Formation and Selection of Tracking Gates 10.1.2 Data Association and Tracking Maintenance 10.1.3 Track Start and End 10. 1.4 Missed Alarms and False Alarms 10.2 Tracking Gates 10.2.1 Circular Tracking Gates 10.2.2 Elliptical (Spherical) Tracking Gates 10.2.3 Rectangular Tracking Gates 10.2.4 Sector Tracking Gates 10.3 Track Initiation 10.3.1 Track Initiation Algorithm 10.3.2 Discussion of Related Issues in Track Initiation 10.4 Target Tracking Model 10.4.1 Motion Model 10.4.2 Measurement Model 10.5 Target Tracking Algorithm 10.5.1 Multi-target Tracking Based on Random Finite Sets 10.5.2 Maneuvering Multi-target Tracking Based on IMM 10.5.3 Maneuvering Target Tracking Based on Expectation Maximization Algorithm 10.5.4 Target Tracking Technology Based on Fuzzy Reasoning 10.6 Track Termination and Track Management 10.6.1 Multi-target Tracking Termination Theory 10.6.2 Track Management [2] 10.6.3 Summary Exercises References Chapter 11 Data Association 11.1 Single Target Measurement - Track Association Algorithm 11.1.1 Nearest Neighbor Method 11.1.2 Probabilistic Data Association 11.1.3 Interactive Multi-Model Probabilistic Data Association 11.1.4 C-IMMPDA Algorithm 11.1.5 Comprehensive Extended Probabilistic Data Association Algorithm 11.2 Multi-Target Measurement - Track Association Algorithm 11.2.1 Joint Probabilistic Data Association 11.2.2 Multiple Hypothesis Method 11.2.3 Probabilistic Multiple Hypothesis Method 11.2.4 Multi-Dimensional Distribution Data Association Algorithm 11.2.5 Global Nearest Neighbor Data Association Algorithm 11.2.6 Single Sensor Generalized Probabilistic Data Association Algorithm 11.2.7 Multi-Sensor Generalized Probabilistic Data Association Algorithm 11.2.8 VDA Algorithm 11.3 Distributed Track Association 11.3.1 Distributed Track Association Based on Statistics 11.3.2 Track Association Based on Fuzzy Reasoning and Grey Theory Exercises References Chapter 12 Integrated Navigation and Information Fusion 12.1 Overview of Navigation System 12.1.1 Inertial Navigation System 12.1.2 Global Satellite Navigation System 12.1.3 Scene Matching Navigation System 12.1.4 Other Navigation Systems 12.1.5 Integrated Navigation System 12.2 Vehicle-mounted GPS/INS/EC Integrated Navigation 12.2.1 System Hardware and Software Structure 12.2.2 Integrated Navigation Estimation Fusion Model 12.2.3 Experimental Results 12.3 Suborbital Vehicle GPS/INS/CNS Integrated Navigation 12.3.1 Overview of Suborbital Vehicle 12.3.2 Analysis of Suborbital Vehicle Flight Characteristics 12.3.3 Blackout Problem 1 2.3.4 Navigation System Design 12.3.5 Fusion Structure Design 12.3.6 Simulation Analysis 12.4 UAV INS/SMNS Integrated Navigation 12.4.1 INS/SMNS Combination Mode 12.4.2 Tightly Coupled INS/SMNS Navigation Characteristics 12.4.3 Experimental Results and Analysis Exercises References Chapter 13 Situation Assessment and Threat Estimation 13.1 Concept of Situation Assessment 13.2 Implementation of Situation Assessment 13.2.1 Situation Prediction 13.2.2 Situation Association 13.2.3 Situation Assessment 13.3 Situation Assessment Method 13.3.1 Situation Assessment Method Based on Fuzzy Clustering 13.3.2 Situation Assessment Based on Bayesian Network 13.3.3 Situation Assessment Based on Markov Model 13.3.4 Situation Assessment Method Based on Joint Fuzzy Logic and Bayesian 13.3.5 Others 13.4 Concept of threat estimation 13.4.1 Definition of threat estimation 13.4.2 Functional model of threat estimation 13.4.3 Main contents of threat estimation 13.5 Knowledge base in threat estimation 13.5.1 Domain knowledge of the system 13.5.2 Knowledge representation of the system 13.5.3 Imprecise reasoning in the system 13.5.4 Establishment of system knowledge base 13.6 Threat estimation based on analytic hierarchy process 13.6.1 Steps for judging threat level 13.6.2 Factors affecting target threat level and establishment of judgment function 13.6.3 Determination of weight coefficients of each factor 13.6.4 Determination of comprehensive evaluation results 13.7 Threat estimation based on multi-factor comprehensive weighting 13.7.1 Basic principle of multi-factor comprehensive weighting method [2] 13.7.2 Application Exercises of Multi-factor Comprehensive Weighted Method References Chapter 14 Performance Evaluation in Information Fusion 14.1 Performance Evaluation Index System 14.1.1 Characteristics of Index System and Selection Principles 14.1.2 Index Types 14.1.3 Plot Setting 14.1.4 Evaluation Index 14.2 Methods of Information Fusion Performance Evaluation 14.2.1 Analytical Method for Information Fusion Performance Evaluation 14.2.2 Monte Carlo Method for Information Fusion Performance Evaluation 14.2.3 Semi-physical Simulation Method for Information Fusion Performance Evaluation 14.2.4 Experimental Verification Method for Information Fusion Performance Evaluation 14.3 Performance Evaluation Examples 14.3.1 Performance Evaluation and Index System of Tracking System 14.3.2 Performance Evaluation of Image Fusion Technology 14.3.3 Index System for Measures of Effectiveness (MOE) 14.4 Other Performance Evaluation Examples 14.4.1 Performance Evaluation of Radar and Infrared Sensor Track Correlation Based on Analytical Method 14.4.2 Performance Evaluation of Track Initiation Based on Analytical Method 14.4.3 Performance Evaluation of Track Initiation Based on Monte Carlo Simulated Radar Network Altitude Estimation Performance Evaluation Exercises References Chapter 15 Sensor Management 15.1 Sensor Management in Information Fusion 15.2 Overview of Sensor Management 15.2.1 Concept of Sensor Management 15.2.2 Contents of Sensor Management 15.2.3 Commonly Used Sensors and Their Manageable Parameters and Modes 15.3 System Structure and Functional Model of Sensor Management 15.3.1 System Structure of Sensor Management 15.3.2 Functional Model of Sensor Management 15.4 Sensor Management Algorithm and Performance Index System 15.4.1 Introduction to Sensor Management Algorithm 15.4.2 Sensor Management Performance Index System 15.5 Airborne Multisensor with Restricted Working Environment Sensor Management 15.5.1 Optimal Decision Model for Sensor Management with Constrained State Variables 15.5.2 A Active/Passive Sensor Management Scheme and Algorithm in a Battlefield Environment 15.6 Multi-factor Single-platform Sensor Management Algorithm Based on Fuzzy Reasoning 15.6.1 Sensor Management Considering Multiple Target Factors 15.6.2 Sensor Management Based on Fuzzy Reasoning 15.6.3 Simulation Study 15.7 Multi-platform Sensor Network Management Based on Joint Information Increment 15.7.1 Joint Information Increment in Multi-sensor Multi-target Tracking 15.7.2 Centralized Network-level Sensor Management Algorithm Based on Joint Information Increment 15.7.3 Simulation Study Exercises References2 Maneuvering multi-target tracking based on IMM 10.5.3 Maneuvering target tracking based on expectation maximization algorithm 10.5.4 Target tracking technology based on fuzzy reasoning 10.6 Track termination and track management 10.6.1 Multi-target tracking termination theory 10.6.2 Track management [2] 10.6.3 Summary Exercises References Chapter 11 Data Association 11.1 Single Target Measurement - Track Association Algorithm 11.1.1 Nearest Neighbor Method 11.1.2 Probabilistic Data Association 11.1.3 Interactive Multi-Model Probabilistic Data Association 11.1.4 C-IMMPDA Algorithm 11.1.5 Comprehensive Extended Probabilistic Data Association Algorithm 11.2 Multi-Target Measurement - Track Association Algorithm 11.2.1 Joint Probabilistic Data Association 11.2.2 Multiple Hypothesis Method 11.2.3 Probabilistic Multiple Hypothesis Method 11.2.4 Multi-Dimensional Distribution Data Association Algorithm 11.2.5 Global Nearest Neighbor Data Association Algorithm 11.2.6 Single Sensor Generalized Probabilistic Data Association Algorithm 11.2.7 Multi-Sensor Generalized Probabilistic Data Association Algorithm 11.2.8 VDA Algorithm 11.3 Distributed Track Association 11.3.1 Distributed Track Association Based on Statistics 11.3.2 Track Association Based on Fuzzy Reasoning and Grey Theory Exercises References Chapter 12 Integrated Navigation and Information Fusion 12.1 Overview of Navigation System 12.1.1 Inertial Navigation System 12.1.2 Global Satellite Navigation System 12.1.3 Scene Matching Navigation System 12.1.4 Other Navigation Systems 12.1.5 Integrated Navigation System 12.2 Vehicle-mounted GPS/INS/EC Integrated Navigation 12.2.1 System Hardware and Software Structure 12.2.2 Integrated Navigation Estimation Fusion Model 12.2.3 Experimental Results 12.3 Suborbital Vehicle GPS/INS/CNS Integrated Navigation 12.3.1 Overview of Suborbital Vehicle 12.3.2 Analysis of Suborbital Vehicle Flight Characteristics 12.3.3 Blackout Problem 1 2.3.4 Navigation System Design 12.3.5 Fusion Structure Design 12.3.6 Simulation Analysis 12.4 UAV INS/SMNS Integrated Navigation 12.4.1 INS/SMNS Combination Mode 12.4.2 Tightly Coupled INS/SMNS Navigation Characteristics 12.4.3 Experimental Results and Analysis Exercises References Chapter 13 Situation Assessment and Threat Estimation 13.1 Concept of Situation Assessment 13.2 Implementation of Situation Assessment 13.2.1 Situation Prediction 13.2.2 Situation Association 13.2.3 Situation Assessment 13.3 Situation Assessment Method 13.3.1 Situation Assessment Method Based on Fuzzy Clustering 13.3.2 Situation Assessment Based on Bayesian Network 13.3.3 Situation Assessment Based on Markov Model 13.3.4 Situation Assessment Method Based on Joint Fuzzy Logic and Bayesian 13.3.5 Others 13.4 Concept of threat estimation 13.4.1 Definition of threat estimation 13.4.2 Functional model of threat estimation 13.4.3 Main contents of threat estimation 13.5 Knowledge base in threat estimation 13.5.1 Domain knowledge of the system 13.5.2 Knowledge representation of the system 13.5.3 Imprecise reasoning in the system 13.5.4 Establishment of system knowledge base 13.6 Threat estimation based on analytic hierarchy process 13.6.1 Steps for judging threat level 13.6.2 Factors affecting target threat level and establishment of judgment function 13.6.3 Determination of weight coefficients of each factor 13.6.4 Determination of comprehensive evaluation results 13.7 Threat estimation based on multi-factor comprehensive weighting 13.7.1 Basic principle of multi-factor comprehensive weighting method [2] 13.7.2 Application Exercises of Multi-factor Comprehensive Weighted Method References Chapter 14 Performance Evaluation in Information Fusion 14.1 Performance Evaluation Index System 14.1.1 Characteristics of Index System and Selection Principles 14.1.2 Index Types 14.1.3 Plot Setting 14.1.4 Evaluation Index 14.2 Methods of Information Fusion Performance Evaluation 14.2.1 Analytical Method for Information Fusion Performance Evaluation 14.2.2 Monte Carlo Method for Information Fusion Performance Evaluation 14.2.3 Semi-physical Simulation Method for Information Fusion Performance Evaluation 14.2.4 Experimental Verification Method for Information Fusion Performance Evaluation 14.3 Performance Evaluation Examples 14.3.1 Performance Evaluation and Index System of Tracking System 14.3.2 Performance Evaluation of Image Fusion Technology 14.3.3 Index System for Measures of Effectiveness (MOE) 14.4 Other Performance Evaluation Examples 14.4.1 Performance Evaluation of Radar and Infrared Sensor Track Correlation Based on Analytical Method 14.4.2 Performance Evaluation of Track Initiation Based on Analytical Method 14.4.3 Performance Evaluation of Track Initiation Based on Monte Carlo Simulated Radar Network Altitude Estimation Performance Evaluation Exercises References Chapter 15 Sensor Management 15.1 Sensor Management in Information Fusion 15.2 Overview of Sensor Management 15.2.1 Concept of Sensor Management 15.2.2 Contents of Sensor Management 15.2.3 Commonly Used Sensors and Their Manageable Parameters and Modes 15.3 System Structure and Functional Model of Sensor Management 15.3.1 System Structure of Sensor Management 15.3.2 Functional Model of Sensor Management 15.4 Sensor Management Algorithm and Performance Index System 15.4.1 Introduction to Sensor Management Algorithm 15.4.2 Sensor Management Performance Index System 15.5 Airborne Multisensor with Restricted Working Environment Sensor Management 15.5.1 Optimal Decision Model for Sensor Management with Constrained State Variables 15.5.2 A Active/Passive Sensor Management Scheme and Algorithm in a Battlefield Environment 15.6 Multi-factor Single-platform Sensor Management Algorithm Based on Fuzzy Reasoning 15.6.1 Sensor Management Considering Multiple Target Factors 15.6.2 Sensor Management Based on Fuzzy Reasoning 15.6.3 Simulation Study 15.7 Multi-platform Sensor Network Management Based on Joint Information Increment 15.7.1 Joint Information Increment in Multi-sensor Multi-target Tracking 15.7.2 Centralized Network-level Sensor Management Algorithm Based on Joint Information Increment 15.7.3 Simulation Study Exercises References2 Maneuvering multi-target tracking based on IMM 10.5.3 Maneuvering target tracking based on expectation maximization algorithm 10.5.4 Target tracking technology based on fuzzy reasoning 10.6 Track termination and track management 10.6.1 Multi-target tracking termination theory 10.6.2 Track management [2] 10.6.3 Summary Exercises References Chapter 11 Data Association 11.1 Single Target Measurement - Track Association Algorithm 11.1.1 Nearest Neighbor Method 11.1.2 Probabilistic Data Association 11.1.3 Interactive Multi-Model Probabilistic Data Association 11.1.4 C-IMMPDA Algorithm 11.1.5 Comprehensive Extended Probabilistic Data Association Algorithm 11.2 Multi-Target Measurement - Track Association Algorithm 11.2.1 Joint Probabilistic Data Association 11.2.2 Multiple Hypothesis Method 11.2.3 Probabilistic Multiple Hypothesis Method 11.2.4 Multi-Dimensional Distribution Data Association Algorithm 11.2.5 Global Nearest Neighbor Data Association Algorithm 11.2.6 Single Sensor Generalized Probabilistic Data Association Algorithm 11.2.7 Multi-Sensor Generalized Probabilistic Data Association Algorithm 11.2.8 VDA Algorithm 11.3 Distributed Track Association 11.3.1 Distributed Track Association Based on Statistics 11.3.2 Track Association Based on Fuzzy Reasoning and Grey Theory Exercises References Chapter 12 Integrated Navigation and Information Fusion 12.1 Overview of Navigation System 12.1.1 Inertial Navigation System 12.1.2 Global Satellite Navigation System 12.1.3 Scene Matching Navigation System 12.1.4 Other Navigation Systems 12.1.5 Integrated Navigation System 12.2 Vehicle-mounted GPS/INS/EC Integrated Navigation 12.2.1 System Hardware and Software Structure 12.2.2 Integrated Navigation Estimation Fusion Model 12.2.3 Experimental Results 12.3 Suborbital Vehicle GPS/INS/CNS Integrated Navigation 12.3.1 Overview of Suborbital Vehicle 12.3.2 Analysis of Suborbital Vehicle Flight Characteristics 12.3.3 Blackout Problem 1 2.3.4 Navigation System Design 12.3.5 Fusion Structure Design 12.3.6 Simulation Analysis 12.4 UAV INS/SMNS Integrated Navigation 12.4.1 INS/SMNS Combination Mode 12.4.2 Tightly Coupled INS/SMNS Navigation Characteristics 12.4.3 Experimental Results and Analysis Exercises References Chapter 13 Situation Assessment and Threat Estimation 13.1 Concept of Situation Assessment 13.2 Implementation of Situation Assessment 13.2.1 Situation Prediction 13.2.2 Situation Association 13.2.3 Situation Assessment 13.3 Situation Assessment Method 13.3.1 Situation Assessment Method Based on Fuzzy Clustering 13.3.2 Situation Assessment Based on Bayesian Network 13.3.3 Situation Assessment Based on Markov Model 13.3.4 Situation Assessment Method Based on Joint Fuzzy Logic and Bayesian 13.3.5 Others 13.4 Concept of threat estimation 13.4.1 Definition of threat estimation 13.4.2 Functional model of threat estimation 13.4.3 Main contents of threat estimation 13.5 Knowledge base in threat estimation 13.5.1 Domain knowledge of the system 13.5.2 Knowledge representation of the system 13.5.3 Imprecise reasoning in the system 13.5.4 Establishment of system knowledge base 13.6 Threat estimation based on analytic hierarchy process 13.6.1 Steps for judging threat level 13.6.2 Factors affecting target threat level and establishment of judgment function 13.6.3 Determination of weight coefficients of each factor 13.6.4 Determination of comprehensive evaluation results 13.7 Threat estimation based on multi-factor comprehensive weighting 13.7.1 Basic principle of multi-factor comprehensive weighting method [2] 13.7.2 Application Exercises of Multi-factor Comprehensive Weighted Method References Chapter 14 Performance Evaluation in Information Fusion 14.1 Performance Evaluation Index System 14.1.1 Characteristics of Index System and Selection Principles 14.1.2 Index Types 14.1.3 Plot Setting 14.1.4 Evaluation Index 14.2 Methods of Information Fusion Performance Evaluation 14.2.1 Analytical Method for Information Fusion Performance Evaluation 14.2.2 Monte Carlo Method for Information Fusion Performance Evaluation 14.2.3 Semi-physical Simulation Method for Information Fusion Performance Evaluation 14.2.4 Experimental Verification Method for Information Fusion Performance Evaluation 14.3 Performance Evaluation Examples 14.3.1 Performance Evaluation and Index System of Tracking System 14.3.2 Performance Evaluation of Image Fusion Technology 14.3.3 Index System for Measures of Effectiveness (MOE) 14.4 Other Performance Evaluation Examples 14.4.1 Performance Evaluation of Radar and Infrared Sensor Track Correlation Based on Analytical Method 14.4.2 Performance Evaluation of Track Initiation Based on Analytical Method 14.4.3 Performance Evaluation of Track Initiation Based on Monte Carlo Simulated Radar Network Altitude Estimation Performance Evaluation Exercises References Chapter 15 Sensor Management 15.1 Sensor Management in Information Fusion 15.2 Overview of Sensor Management 15.2.1 Concept of Sensor Management 15.2.2 Contents of Sensor Management 15.2.3 Commonly Used Sensors and Their Manageable Parameters and Modes 15.3 System Structure and Functional Model of Sensor Management 15.3.1 System Structure of Sensor Management 15.3.2 Functional Model of Sensor Management 15.4 Sensor Management Algorithm and Performance Index System 15.4.1 Introduction to Sensor Management Algorithm 15.4.2 Sensor Management Performance Index System 15.5 Airborne Multisensor with Restricted Working Environment Sensor Management 15.5.1 Optimal Decision Model for Sensor Management with Constrained State Variables 15.5.2 A Active/Passive Sensor Management Scheme and Algorithm in a Battlefield Environment 15.6 Multi-factor Single-platform Sensor Management Algorithm Based on Fuzzy Reasoning 15.6.1 Sensor Management Considering Multiple Target Factors 15.6.2 Sensor Management Based on Fuzzy Reasoning 15.6.3 Simulation Study 15.7 Multi-platform Sensor Network Management Based on Joint Information Increment 15.7.1 Joint Information Increment in Multi-sensor Multi-target Tracking 15.7.2 Centralized Network-level Sensor Management Algorithm Based on Joint Information Increment 15.7.3 Simulation Study Exercises References4 Situation Assessment Based on Joint Fuzzy Logic and Bayesian Networks 13.3.5 Others 13.4 Concept of Threat Estimation 13.4.1 Definition of Threat Estimation 13.4.2 Functional Model of Threat Estimation 13.4.3 Main Contents of Threat Estimation 13.5 Knowledge Base in Threat Estimation 13.5.1 Domain Knowledge of the System 13.5.2 Knowledge Representation of the System 13.5.3 Imprecise Reasoning in the System 13.5.4 Establishment of System Knowledge Base 13.6 Threat Estimation Based on Hierarchy Analysis Method 13.6.1 Steps for Judging Threat Level 13.6.2 Factors Affecting the Target Threat Level and Establishment of Judgment Function 13.6.3 Determination of Weighting Coefficients of Each Factor 13.6.4 Determination of Comprehensive Evaluation Result 13.7 Threat Estimation Based on Multi-factor Comprehensive Weighting 13.7.1 Basic Principle of Multi-factor Comprehensive Weighting Method [2] 13.7.2 Application Exercises of Multi-factor Comprehensive Weighted Method References Chapter 14 Performance Evaluation in Information Fusion 14.1 Performance Evaluation Index System 14.1.1 Characteristics of Index System and Selection Principles 14.1.2 Index Types 14.1.3 Plot Setting 14.1.4 Evaluation Index 14.2 Methods of Information Fusion Performance Evaluation 14.2.1 Analytical Method for Information Fusion Performance Evaluation 14.2.2 Monte Carlo Method for Information Fusion Performance Evaluation 14.2.3 Semi-physical Simulation Method for Information Fusion Performance Evaluation 14.2.4 Experimental Verification Method for Information Fusion Performance Evaluation 14.3 Performance Evaluation Examples 14.3.1 Performance Evaluation and Index System of Tracking System 14.3.2 Performance Evaluation of Image Fusion Technology 14.3.3 Index System for Measures of Effectiveness (MOE) 14.4 Other Performance Evaluation Examples 14.4.1 Performance Evaluation of Radar and Infrared Sensor Track Correlation Based on Analytical Method 14.4.2 Performance Evaluation of Track Initiation Based on Analytical Method 14.4.3 Performance Evaluation of Track Initiation Based on Monte Carlo Simulated Radar Network Altitude Estimation Performance Evaluation Exercises References Chapter 15 Sensor Management 15.1 Sensor Management in Information Fusion 15.2 Overview of Sensor Management 15.2.1 Concept of Sensor Management 15.2.2 Contents of Sensor Management 15.2.3 Commonly Used Sensors and Their Manageable Parameters and Modes 15.3 System Structure and Functional Model of Sensor Management 15.3.1 System Structure of Sensor Management 15.3.2 Functional Model of Sensor Management 15.4 Sensor Management Algorithm and Performance Index System 15.4.1 Introduction to Sensor Management Algorithm 15.4.2 Sensor Management Performance Index System 15.5 Airborne Multisensor with Restricted Working Environment Sensor Management 15.5.1 Optimal Decision Model for Sensor Management with Constrained State Variables 15.5.2 A Active/Passive Sensor Management Scheme and Algorithm in a Battlefield Environment 15.6 Multi-factor Single-platform Sensor Management Algorithm Based on Fuzzy Reasoning 15.6.1 Sensor Management Considering Multiple Target Factors 15.6.2 Sensor Management Based on Fuzzy Reasoning 15.6.3 Simulation Study 15.7 Multi-platform Sensor Network Management Based on Joint Information Increment 15.7.1 Joint Information Increment in Multi-sensor Multi-target Tracking 15.7.2 Centralized Network-level Sensor Management Algorithm Based on Joint Information Increment 15.7.3 Simulation Study Exercises References4 Situation Assessment Based on Joint Fuzzy Logic and Bayesian Networks 13.3.5 Others 13.4 Concept of Threat Estimation 13.4.1 Definition of Threat Estimation 13.4.2 Functional Model of Threat Estimation 13.4.3 Main Contents of Threat Estimation 13.5 Knowledge Base in Threat Estimation 13.5.1 Domain Knowledge of the System 13.5.2 Knowledge Representation of the System 13.5.3 Imprecise Reasoning in the System 13.5.4 Establishment of System Knowledge Base 13.6 Threat Estimation Based on Hierarchy Analysis Method 13.6.1 Steps for Judging Threat Level 13.6.2 Factors Affecting the Target Threat Level and Establishment of Judgment Function 13.6.3 Determination of Weighting Coefficients of Each Factor 13.6.4 Determination of Comprehensive Evaluation Result 13.7 Threat Estimation Based on Multi-factor Comprehensive Weighting 13.7.1 Basic Principle of Multi-factor Comprehensive Weighting Method [2] 13.7.2 Application Exercises of Multi-factor Comprehensive Weighted Method References Chapter 14 Performance Evaluation in Information Fusion 14.1 Performance Evaluation Index System 14.1.1 Characteristics of Index System and Selection Principles 14.1.2 Index Types 14.1.3 Plot Setting 14.1.4 Evaluation Index 14.2 Methods of Information Fusion Performance Evaluation 14.2.1 Analytical Method for Information Fusion Performance Evaluation 14.2.2 Monte Carlo Method for Information Fusion Performance Evaluation 14.2.3 Semi-physical Simulation Method for Information Fusion Performance Evaluation 14.2.4 Experimental Verification Method for Information Fusion Performance Evaluation 14.3 Performance Evaluation Examples 14.3.1 Performance Evaluation and Index System of Tracking System 14.3.2 Performance Evaluation of Image Fusion Technology 14.3.3 Index System for Measures of Effectiveness (MOE) 14.4 Other Performance Evaluation Examples 14.4.1 Performance Evaluation of Radar and Infrared Sensor Track Correlation Based on Analytical Method 14.4.2 Performance Evaluation of Track Initiation Based on Analytical Method 14.4.3 Performance Evaluation of Track Initiation Based on Monte Carlo Simulated Radar Network Altitude Estimation Performance Evaluation Exercises References Chapter 15 Sensor Management 15.1 Sensor Management in Information Fusion 15.2 Overview of Sensor Management 15.2.1 Concept of Sensor Management 15.2.2 Contents of Sensor Management 15.2.3 Commonly Used Sensors and Their Manageable Parameters and Modes 15.3 System Structure and Functional Model of Sensor Management 15.3.1 System Structure of Sensor Management 15.3.2 Functional Model of Sensor Management 15.4 Sensor Management Algorithm and Performance Index System 15.4.1 Introduction to Sensor Management Algorithm 15.4.2 Sensor Management Performance Index System 15.5 Airborne Multisensor with Restricted Working Environment Sensor Management 15.5.1 Optimal Decision Model for Sensor Management with Constrained State Variables 15.5.2 A Active/Passive Sensor Management Scheme and Algorithm in a Battlefield Environment 15.6 Multi-factor Single-platform Sensor Management Algorithm Based on Fuzzy Reasoning 15.6.1 Sensor Management Considering Multiple Target Factors 15.6.2 Sensor Management Based on Fuzzy Reasoning 15.6.3 Simulation Study 15.7 Multi-platform Sensor Network Management Based on Joint Information Increment 15.7.1 Joint Information Increment in Multi-sensor Multi-target Tracking 15.7.2 Centralized Network-level Sensor Management Algorithm Based on Joint Information Increment 15.7.3 Simulation Study Exercises References

unfold

You Might Like

Uploader
抛砖引玉
 

Recommended ContentMore

Popular Components

Just Take a LookMore

EEWorld
subscription
account

EEWorld
service
account

Automotive
development
circle

About Us Customer Service Contact Information Datasheet Sitemap LatestNews


Room 1530, 15th Floor, Building B, No.18 Zhongguancun Street, Haidian District, Beijing, Postal Code: 100190 China Telephone: 008610 8235 0740

Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved 京ICP证060456号 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号
×