* "OPIC" (Optical IC) is a trademark of the SHARP Corporation.
An OPIC consists of a light-detecting element and signal-
processing circuit integrated onto a single chip.
s
Absolute Maximum Ratings
Parameter
Forward current
Peak forward current
Peak transient forward current
Reverse voltage
Power dissipation
Supply voltage
Output voltage
Emitter-base reverse
withstand voltage (Pin 5 to 7)
Average output current
Power dissipation
Isolation voltage
Operating temperature
Storage temperature
Soldering temperature
Symbol
I
F
I
F
I
FM
V
R
P
V
CC
V
O
V
EBO
I
O
P
O
V
iso
(rms)
T
opr
T
stg
T
sol
( Ta=25˚C )
Rating
20
40
1
5
35
−0.5
to
+18
−0.5
to
+18
0.5
60
100
2.5
0 to
+70
−55
to
+125
260
Unit
mA
mA
A
V
mW
V
V
V
mA
mW
kV
˚C
˚C
˚C
*1
Input
*2
Output
*3
*4
*5
*1
*2
*3
*4
*5
50% duty cycle, Pulse width=1ms
Pulse width≤1µs, 300pulse/s
Decreases at the rate of 0.7mA/˚C if the external temperature is 25˚C or more.
40 to 60% RH, AC for 1 minute
For 10 seconds
Notice
In the absence of confirmation by device specification sheets, SHARP takes no responsibility for any defects that may occur in equipment using any SHARP
devices shown in catalogs, data books, etc. Contact SHARP in order to obtain the latest device specification sheets before using any SHARP device.
Internet Internet address for Electronic Components Group http://www.sharp.co.jp/ecg/
6N139
s
Electro-optical Characteristics
Parameter
*6
(Ta=0 to 70˚C unless otherwise specified )
Current transfer ratio
Logic (0) output voltage
Logic (1) output current
Logic (0) supply current
Logic (1) supply current
Input forward voltage
Input forward voltage temperature coefficient
Input reverse voltage
Input capacitance
Symbol
CTR (1)
CTR (2)
V
OL
(1)
V
OL
(2)
V
OL
(3)
I
OH
I
CCL
I
CCH
V
F
*7
BV
R
C
IN
I
I-O
R
I-O
C
I-O
Conditions
I
F
=0.5mA, V
O
=0.4V, V
CC
=4.5V
I
F
=1.6mA, V
O
=0.4V, V
CC
=4.5V
I
O
=6.4mA, V
CC
=4.5V, I
F
=1.6mA
I
O
=15mA, V
CC
=4.5V, I
F
=5mA
I
O
=24mA, V
CC
=4.5V, I
F
=12mA
I
F
=0, V
CC
=V
O
=18V
I
F
=1.6mA, V
CC
=5V, V
O
=open
I
F
=0, V
CC
=5V, V
O
=open
I
F
=1.6mA, Ta=25˚C
I
F
=1.6mA
I
R
=10µA, Ta=25˚C
V
F
=0, f=1MHz
Ta=25˚C, RH=45%, t=5s
V
I-O
=3kV DC
V
I-O
=500V DC
f=1MHz
MIN.
400
500
−
−
−
−
−
−
−
−
5.0
−
−
−
−
TYP.
1 800
1 600
0.1
0.1
0.1
0.05
0.5
10
1.5
−1.9
−
60
−
1×10
12
0.6
MAX.
−
−
0.4
0.4
0.4
100
−
−
1.7
−
−
−
1.0
−
−
Unit
%
%
V
V
V
µA
mA
nA
V
mV/˚C
V
pF
µA
Ω
pF
*8
Leak
current (input-output)
*8
Isolation
resistance (input-output)
*8
Capacitance (input-output)
*6 Current transfer ratio is the ratio of input current and output current expressed in %.
*7
∆V
F
/
∆T
a
*8 Measured as 2-pin element (Short 1, 2, 3, 4 and 5, 6, 7, 8)
Note) Type value : at Ta=25˚C
s
Switching Characteristics
Parameter
*9
*9
*10
*11
*10
*11
( Ta=25˚C, V
CC
=5V )
Symbol
t
PHL
t
PLH
CM
H
CM
L
Propagation delay time
Output (1)
→
(0)
Propagation delay time
Output (0)
→
(1)
Instantaneous common mode
rejection voltage " output (1) "
Instantaneous common mode
rejection voltage " output (0) "
Conditions
R
L
=4.7kΩ, I
F
=0.5mA
R
L
=270Ω, I
F
=12mA
R
L
=4.7kΩ, I
F
=0.5mA
R
L
=270Ω, I
F
=12mA
I
F
=0, V
CM
=10V
P-P
R
L
=2.2kΩ
I
F
=1.6mA, V
CM
=10V
P-P
R
L
=2.2kΩ
MIN.
−
−
−
−
−
−
TYP.
5
0.3
10
1.5
500
−500
MAX.
25
1
60
7
−
−
Unit
µs
µs
µs
µs
V/µs
V/µs
*10 Instantaneous common mode rejection voltage " output (1) " represents
a common mode voltage variation that can hold the output above (1) level (V
O
>2.0V)
Instantaneous common mode rejection voltage " output (0) " represents
a common mode voltage variation that can hold the output above (0) level (V
O
<0.8V)
*9
Test Circuit for Propagation Delay Time
Pulse generator
Pulse input
I
F
duty ratio
=1/10
I
F
0
1
2
3
I
F
monitor
100Ω
4
8
7
6
5
R
L
V
O
C
L
=15pF
t
PHL
t
PLH
V
CC
V
O
1.5V
5V
1.5V
V
OL
6N139
*11
Test Circuit for Instantaneous Common Mode Rejection Voltage
10V
V
CM
0V
CM
H
V
O
CM
L
V
CM
I
F
=0
0.8V
2V
5V
V
OL
90%
10%
t
r
10%
90%
I
F
1
2
8
7
6
5
R
L
V
CC
=5V
t
f
B
V
FF
A
3
4
V
O
V
O
I
F
=16mA
Fig. 1 Forward Current vs.
Ambient Temperature
30
Fig. 2 Power Dissipation vs.
Ambient Temperature
120
P
O
Power dissipation P, P
O
(mW)
100
Forward current I
F
(mA)
20
80
60
10
40
35
20
0
0
P
0
0
25
50
70
75
100
25
50
70 75
100
Ambient Temperature T
a
(˚C)
Ambient Temperature T
a
(˚C)
Fig. 3 Forward Current vs.
Forward Voltage
100
Fig. 4 Output Current vs. Output Voltage
60
V
CC
=5V
T
a
=25˚C
.)
X
A
(M
P
O
50
I
F
=5mA
Output current I
O
(mA)
Forward current I
F
(mA)
10
4.5mA
4.0mA
40
3.5mA
3.0mA
2.5mA
2.0mA
1
T
a
=0˚C
25˚C
50˚C
70˚C
30
20
1.5mA
1.0mA
0.5mA
0.1
10
0.01
1.0
0
0
1.2
1.4
1.6
1.8
2.0
2.2
1
2
Forward voltage V
F
(V)
Output voltage V
O
(V)
6N139
Fig. 5 Current Transfer Ratio vs.
Forward Current
1000
T
a
=70˚C
25˚C
0˚C
800
V
CC
=4.5V
V
O
=0.4V
Fig. 6 Output Current vs. Forward Current
50
10
Current transfer ratio (%)
Output current I
O
(mA)
T
a
=70˚C
1
600
0.1
25˚C
0˚C
V
CC
=5.0V
V
O
=0.4V
10
100
400
0.01
0.004
0.01
200
0.1
1
10
100
0.1
1
Forward current I
F
(mA)
Forward current I
F
(mA)
Fig. 7-a Propagation Delay Time vs.
Ambient Temperature
2
I
F
=12mA
R
L
=270Ω
1/f=100µs
Fig. 7-b Propagation Delay Time vs.
Ambient Temperature
10
I
F
=0.5mA
R
L
=4.7kΩ
1/f=1ms
Propagation delay time t
PHL
, t
PLH
(nµ)
Propagation delay time t
PHL
, t
PLH
(nµ)
t
PLH
1
t
PLH
5
t
PHL
t
PHL
0
0
10
20
30
40
50
60
70
0
0
10
20
30
40
50
60
70
Ambient Temperature T
a
(˚C)
Ambient Temperature T
a
(˚C)
Fig. 8 Rise Time, Fall Time vs.
Load Resistance
1 000
Fig. 9 Logic (1) Supply Current vs.
Ambient Temperature
10
−6
I
F
=0mA
V
CC
=15V
V
O
=OPEN
Logic (1) supply current I
CCH
(A)
Adjust I
F
to V
OL
=2V
T
a
=25˚C *12
Rise time, fall time t
r
, t
f
(µs)
10
−7
100
10
−8
t
f
10
t
r
10
−9
1
0.1
1
10
10
−10
0
10
20
30
40
50
60
70
Load resistance R
L
(kΩ)
Ambient Temperature T
a
(˚C)
6N139
*12
Test Circuit for Rise Time, Fall Time vs. Load Resistance
Input
I
F
O
Pulse generator
Pulse input
duty ratio
=1/10
V
O
I
F
1
2
3
8
7
6
5
R
L
V
O
C
L
=15pF
V
CC
t
PHL
Output
(saturated)
1.5V
t
PLH
1.5V
5V
V
OL
I
F
monitor
4
100Ω
10%
90%
t
r
90%
10%
t
f
5V
2V
Output
(non-saturated)
s
Precaution for use
(1) It is recommended that a by-pass capacitor of more than 0.01µF be added between V
CC
and GND near the
device in order to stabilize power supply line.
(2) Transistor of detector side in bipolar configuration is apt to be affected by static electricity for its minute design.
When handling them, general counterplan against static electricity should be taken to avoid breakdown of