QPL product with established reliability (ER): meets
requirements of MIL-PRF-55182/9
•
Load life stability: ± 0.005 % for 2000 h, 0.3 W at + 125 °C
•
Temperature coefficient of resistance (TCR): ± 2 ppm/°C max.
(- 55 °C to + 175 °C)
•
Resistance tolerance: to ± 0.005 %
•
Thermal EMF: < 0.1 µV/°C
•
Qualified resistance range: 4.99
Ω
to 121 kΩ (RNC90Y)
30.1
Ω
to 121 kΩ (RNC90Z)
•
Specially conditioned non-QPL resistors available
See data sheet “Improved Performance Tested”
•
Fast thermal stabilization
•
Rise time: 1 ns without ringing
•
Special coatings that provide a cushioning layer which isolates
the resistive element from external stresses and moisture
•
Electrostatic discharge (ESD) above 25 000 V
•
Non inductive, non capacitive design
•
Current noise < - 42 dB
•
Prototype sample available from 72 h
INTRODUCTION
Vishay Military Established Reliability resistors are available
in resistance values from 4.99
Ω
through 121 kΩ and for
tolerances from ± 0.005 % to ± 1.0 %. The same resistors are
also available as a non-qualified product for customers
desiring higher or lower resistance values and the same or
better performance capabilities. (See table 2) Both the
qualified and the non-qualified version are manufactured on
the same production line facilities and are subjected to the
same process, lot control, conditioning, and GRP A (100 %)
screening. Qualified versions receive additional MIL Group B
and C testing.
TABLE 1 - SPECIFICATIONS COMPARISON
SPECIFICATION
RNC90Y (QUALIFIED)
RNC90Z (QUALIFIED)
S555 (NON-QUALIFIED)
Z555 (NON-QUALIFIED)
MIL-PRF-55182/9
MIL-PRF-55182/9
VISHAY PERFORMANCE
VISHAY PERFORMANCE
CHARACTERISTIC Y LIMITS CHARACTERISTIC Z LIMITS
LIMITS
LIMITS
± 5 ppm/°C
± 2 ppm/°C
± 5 ppm/°C
± 3 ppm/°C ± 2.5 ppm/°C ± 2 ppm/°C
(- 55 °C to + 125 °C)
(- 55 °C to + 175 °C)
(- 55 °C to + 125 °C)
± 10 ppm/°C
(- 55 °C to + 125 °C)
(+ 125 °C to + 175 °C)
4.99
Ω
to
> 25
Ω
to
4.99
Ω
to 121 k
Ω
30.1
Ω
to 121 k
Ω
1
Ω
to 150 k
Ω
> 80
Ω
25
Ω
80
Ω
Level R
Level R
Not specified
Not specified
Temperature
Coefficient of
Resistance
Resistance Range
Failure Rate
Load-Life Stability
0.3 W at + 125 °C
at 2000 h
at 10 000 h
Current Noise
High-Frequency
Operation
Rise Time
Inductance
3)
(L)
Capacitance (C)
Voltage Coefficient
Working Voltage
4)
Thermal EMF
5)
± 0.05 % maximum
ΔR
± 0.5 % maximum
ΔR
Not specified
± 0.05 % maximum
ΔR
± 0.5 % maximum
ΔR
Not specified
± 0.015 % maximum
ΔR
2)
± 0.05 % maximum
ΔR
2)
- 40 dB minimum
1.0 ns at 1 k
Ω
0.1 µH maximum
0.08 µH typical
1.0 pF maximum
0.5 pF typical
0.0001 %/V
300 V maximum
0.1 µV/°C maximum
1 µV/W maximum
± 0.015 % maximum
ΔR
2)
± 0.05 % maximum
ΔR
2)
- 40 dB minimum
1.0 ns at 1 k
Ω
0.1 µH maximum
0.08 µH typical
1.0 pF maximum
0.5 pF typical
0.0001 %/V
300 V maximum
0.1 µV/°C maximum
1 µV/W maximum
Not specified
Not specified
Not specified
0.0005 %/V
300 V maximum
Not specified
Not specified
Not specified
Not specified
0.0005 %/V
300 V maximum
Not specified
Notes
1. Qualification and failure rate verification test data is maintained by Vishay Foil and is available upon request. Lot traceability and identification
data is maintained by Vishay Foil for 7 years.
2. Load life
ΔR
Maximum can be reduced by 80 % through Enhanced Reliability Testing (ERT). Consult Vishay Applications Engineering for
details.
3. Inductance (L) due mainly to the leads.
4. Not to exceed power rating of resistor.
5. µV/°C relates to EMF due to lead temperature differences and µV/W due to power applied to the resistor.
6. 0.200" (5.08 mm) lead spacing available - specify RNC90T for RNC90Y, and RNC90S for RNC90Z.
Document Number: 63007
Revision: 03-Sep-08
For any questions, contact: foil@vishay.com
www.vishay.com
1
Military and Space Established Reliability
Vishay Foil Resistors
Bulk Metal
®
Foil Technology
RNC90Y and RNC90Z (Z-Foil) to MIL-PRF-55182/9
FIGURE 1 - COMPARISON OF RNC90Y TO RNC90Z TEMPERATURE COEFFICIENT OF RESISTANCE
+ 1000
RNC90Y
+ 1000
+ 1000
RNC90Z
+ 1000
+ 500
+ 400
ΔR/R
(ppm)
ΔR/R
(ppm)
+ 160
0
- 160
+ 300
+ 200
0
- 200
- 300
- 400
- 500
- 1000
- 55
25
Temperature (°C)
125
- 1000
175
- 1000
- 55
25
Temperature (°C)
125
- 1000
175
Specification ± 5 ppm/°C ± 10 ppm/°C
Specification ± 2 ppm/°C
FIGURE 2 - TRIMMING TO VALUES
(Conceptual Illustration)
FIGURE 3 - POWER DERATING CURVE
+ 70 °C
Interloop Capacitance
Reduction in Series
Current Path
Before Trimming
Current Path
After Trimming
Trimming Process
Removes this Material
from Shorting Strip Area
Changing Current Path
and Increasing
Resistance
Percent of Rated Power
200
150
100
50
0
- 50
Rated Power
Mutual Inductance
Reduction due
to Change in
Current Direction
- 25
0
+ 25 + 50 + 75 + 100 + 125 + 150 + 175
Ambient Temperature °C
Note:
Foil shown in
black,
etched spaces in
white
FIGURE 4 - IMPRINTING AND DIMENSIONS
RNC90Y and RNC90Z Military Approved Resistors
Front View
L
VISHAY
18612
XXXXX J
Side View
Manufacturers
Identification
Number
W
Resistance
Tolerance
Code
Lead Material
#22 AWG
(0.025 Dia.)
Solder Coated
Copper
Rear View
Model Number
XXXXX
100R01
B
R
H
Mfr. Code
07
11
B
Factory Year Week
Resistance
Value Code
Failure Rate Code
(Not Present If
Non-Qualified)
LL
ST
Jan Designator
(Non Present If
Non-Qualified)
SW
LS
1)
Note
1. 0.200" (5.08 mm) lead spacing available - specify RNC90T for RNC90Y, and RNC90S for RNC90Z
www.vishay.com
2
For any questions, contact: foil@vishay.com
Document Number: 63007
Revision: 03-Sep-08
Military and Space Established Reliability
Bulk Metal
®
Foil Technology
Vishay Foil Resistors
RNC90Y and RNC90Z (Z-Foil) to MIL-PRF-55182/9
TABLE 2 - MODEL SELECTION
STANDARD RESISTANCE
TOLERANCE
TIGHTEST
LOOSEST
%
%
30.1 to 121K
± 0.005
± 1.0
16.2 to 30.0
± 0.05
± 1.0
RNC90Y
4.99 to 16.0
± 0.1
± 1.0
RNC90Z
30.1 to 121K
± 0.005
± 1.0
30.1 to 121K
± 0.005
± 1.0
20 to < 30.1
± 0.01
± 1.0
5 to < 20
± 0.05
± 1.0
S555
(NON QPL)
2 to < 5
± 0.1
± 1.0
1 to < 2
± 0.5
± 1.0
> 121K to 150K
± 0.005
± 1.0
30.1 to 121K
± 0.005
± 1.0
Z555
20 to < 30.1
± 0.01
± 1.0
(NON QPL)
4.99 to < 20R
± 0.05
± 1.0
Note
MODEL
NUMBER
RESISTANCE
RANGE
(Ω)
FAILURE
RATE
M, P, R
(See
Table 3)
AVERAGE
WEIGHT
(g)
at + 70 °C at + 125 ° C
0.6 W
0.6 W
0.3 W
0.3 W
0.6
0.6
W: 0.105 ± 0.010
L: 0.300 ± 0.010
H: 0.326 ± 0.010
ST: 0.015 ± 0.005
SW: 0.040 ± 0.005
LL: 1.000 ± 0.125
LS: 0.150 ± 0.005
2.67 ± 0.25
7.62 ± 0.25
8.28 ± 0.25
0.38 ± 0.13
1.02 ± 0.13
25.4 ± 3.18
3.81 ± 0.13
AMBIENT
POWER RATING
DIMENSIONS
INCHES
mm
-
0.6 W
0.3 W
0.6
-
-
0.4 W
0.6 W
0.2 W
0.3 W
0.6
0.6
• S555 and Z555 units are manufactured on the same production line facilities and are subjected to all the same process and lot control
requirements imposed on RNC90Y (Z) version, as well as all of the special screening, environmental conditioning and documentation
stipulations outlined in MIL-PRF 55182/9
TABLE 3 - GLOBAL PART NUMBER INFORMATION
NEW GLOBAL PART NUMBER: Y1189100R500AR0L (preferred part number format)
DENOTES PRECISION
Y
VALUE
R
=
Ω
K
= kΩ
LIFE FAILURE RATE (LFR)
R
= ± 0.01 %
P
= ± 0.1 %
M
= ± 1.0 %
AER*
0
= standard
1 - 999
= custom
Y
1
1
8
9
1
0
0
R
5
0
0
A
R
0
L
PRODUCT CODE
1189
= RNC90Z
0089
= RNC90Y
1508
= RNC90T
1506
= RNC90S
0088
= S555
1288
= Z555
RESISTANCE TOLERANCE
V
= ± 0.005 %
T
= ± 0.01 %
A
= ± 0.05 %
B
= ± 0.1 %
D
= ± 0.5 %
F
= ± 1.0 %
PACKAGING
L
= bulk pack
R
= tape and reel
FOR EXAMPLE: ABOVE GLOBAL ORDER Y1189 100R500 A R 0 L:
TYPE: RNC90Z
VALUE: 100.5
Ω
ABSOLUTE TOLERANCE: ± 0.05 %
LIFE FAILURE RATE (LFR): ± 0.01 %
AER: standard
PACKAGING: bulk pack
HISTORICAL PART NUMBER: RNC90Z 100R50 A R B (will continue to be used)
RNC90Z
MODEL
RNC90Z
RNC90S
RNC90Y
RNC90T
S555
Z555
Note
* For non-standard requests, please contact application engineering.
Document Number: 63007
Revision: 03-Sep-08
For any questions, contact: foil@vishay.com
www.vishay.com
3
100R50
OHMIC VALUE
100.5
Ω
A
RESISTANCE
TOLERANCE
V
= ± 0.005 %
T
= ± 0.01 %
A
= ± 0.05 %
B
= ± 0.1 %
D
= ± 0.5 %
F
= ± 1.0 %
R
LIFE FAILURE
RATE (LFR)
R
= ± 0.01 %
P
= ± 0.1 %
M
= ± 1.0 %
B
PACKAGING
B
= bulk pack
Military and Space Established Reliability
Vishay Foil Resistors
Bulk Metal
®
Foil Technology
RNC90Y and RNC90Z (Z-Foil) to MIL-PRF-55182/9
CAGE #18612
“Commercial and Government Entity”
Formerly “FSCM”
The response of military and non military grade resistors to environmental stresses can be made better by “Improved
Performance Testing” (IPT). The IPT part will see burn-in and cycling that removes the “knee” from the normal drift of non IPT
parts. (See Table 4 for the improvement to expect in military parts when calling for Vishay recommended screening). Users
should be aware that IPT testing renders the part non QPL and so a 3XXXXX part number will be assigned by Vishay. Consult
Applications Engineering for details and ordering advice.
TABLE 4 - IMPROVED PERFORMANCE TESTING (NON-QPL APPROVED) VS. QPL
TEST
GROUP
I
TEST
Power Conditioning
Thermal Shock and
Overload Combined
Resistance Temperature
Characteristic
Low Temperature Storage
Low Temperature Operation
Terminal Strength
DWV
Insulation Resistance
Resistance to Soldering Heat
Moisture Resistance
Shock
Vibration
Load Life at + 125 °C; 2000 h
Load Life at + 125 °C; 10 000 h
+ 85 °C Power Rating
+ 70 °C Power Rating
+ 25 °C Power Rating
Storage Life
High Temperature Exposure
Max. Allowance Reactance
Current Noise
Voltage Coefficient
Thermal EMF
not done
4.8.2
4.8.3
4.8.9
RNC90Y
MIL-PRF-55182/9
METHOD PARAGRAPH
LIMITS
-
-
± 0.05 %
± 5 ppm/°C
VISHAY
IMPROVED PERFORMANCE
TESTING
(IPT) LIMITS
± 0.0025 %
± 0.0025 %
± 0.0025 %
< ± 2 ppm/°C
(- 55 °C to + 125 °C)
(Can be sorted for tighter tracking)
± 0.0025 %
± 0.0025 %
± 0.001 %
± 0.001 %
> 10
4
MΩ
± 0.001 %
± 0.015 %
± 0.0025 %
± 0.0025 %
± 0.005 % (50 ppm)
± 0.015 % (150 ppm)
± 0.005 % (50 ppm)
± 0.005 % (50 ppm)
± 0.005 % (50 ppm)
± 0.0025 %
± 0.005 %
<1%
< - 42 dB
< 0.00001 %/V
(< 0.1 ppm/V)
0.1 µV/°C
II
III
IV
V
V (a)
V (b)
VI
VII
VIII
4.8.23
4.8.10
4.8.11
4.8.12
4.8.13
4.8.14
4.8.15
4.8.16
4.8.17
4.8.18
4.8.18
-
4.8.18
-
-
4.8.19
-
-
4.8.20
-
-
± 0.05 %
± 0.05 %
± 0.02 %
± 0.02 %
10
4
MΩ
± 0.02 %
± 0.05 %
± 0.01 %
± 0.02 %
± 0.05 %
± 0.5 %
-
± 0.05 %
-
-
± 0.5 %
-
-
0.0005 %/V
(5 ppm/V)
-
FIGURE 5 - IPT IMPRINTING AND DIMENSIONS
in inches (millimeters)
Front View
0.300 ± 0.010
(7.62 ± 0.25)
VISHAY
XXXX
3XXXXX
Date Code
01
10
Year Week
0.015 ± 0.005
(0.381 ± 0.13)
Model Number
0.150 ± 0.005
(3.81 ± 0.13)
Lead Material
#22 AWG
(0.025 Dia.)
Solder Coated
Copper
0.040 ± 0.005
(1.02 ± 0.13)
Side View
0.105 ± 0.010
(2.67 ± 0.25)
Rear View
Optional
Customer P/N
6 Digits Maximum
Resistance
Value Code
Tolerance
1.00 ± 0.125
(25.4 ± 3.18)
0.326 ± 0.010
(8.28 ± 0.25)
XXXXXX
100R01
0.01 %
www.vishay.com
4
For any questions, contact: foil@vishay.com
Document Number: 63007
Revision: 03-Sep-08
Legal Disclaimer Notice
Vishay
Disclaimer
All product specifications and data are subject to change without notice.
Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf
(collectively, “Vishay”), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein
or in any other disclosure relating to any product.
Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any
information provided herein to the maximum extent permitted by law. The product specifications do not expand or
otherwise modify Vishay’s terms and conditions of purchase, including but not limited to the warranty expressed
therein, which apply to these products.
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this
document or by any conduct of Vishay.
The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless
otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such
applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting
from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding
products designed for such applications.
Product names and markings noted herein may be trademarks of their respective owners.
I would like to ask how to download the executable file from the PC to the development board. I installed minicom and ftp server on Ubuntu under the PC, but I don’t know how to connect to the developm...
The camshaft position sensor is also called the camshaft angle sensor, phase sensor, cylinder identification sensor, and some cars also call it the 1 cylinder top dead center sensor. The most common n...
FX3/CX3 (CYUSB3065) Regarding the thread being locked:I use this chip, and then use the routine to create a DMA to transfer UVC video data through USB3 (as a computer camera). The function has been re...
I succeeded in using external interrupt PC2, but PC3 failed to use external interrupt function. I tried the external input reading function of PC3 and it worked. Does PC3 have any special configuratio...
With the global popularization and advancement of cellular wireless communication technologies represented by 4G and 5G, and the vigorous development of communication technologies in various professio...
When I learned about Arduino a few years ago, I never thought that I would start to tinker with it one day. I always thought that programs based on Arduino took up space and were slow... When I looked...
The heat dissipation problem of LED is the most headache for LED manufacturers. However, aluminum substrate can be used because aluminum has high thermal conductivity and good heat dissipation, whi...[Details]
The advent of FinFETs has a significant impact on the physical design and testability design flow of integrated circuits . The introduction of FinFETs means that complementary metal oxide semicon...[Details]
Dynamic speaker structure
A dynamic speaker is a common type of speaker, which is usually used to amplify and play low-frequency audio. The following is the composition of a dynamic speaker:
...[Details]
This article aims to introduce Local Internet, a low-cost serial communication protocol that is mainly used in distributed electronic systems in automobiles and network-based vehicle concepts.
...[Details]
introduction
Fujian Sanan Iron and Steel Company's engineering automation system uses SIEMENS S7-400 PLC system, with PLC as control station and industrial computer as operation station to for...[Details]
LED fluorescent lamps are increasingly entering people's lives with their unique advantages. What are the advantages of this kind of lamp? Let's take stock today. First of all, LED fluorescent ...[Details]
Recently, SmartSens, a leading CMOS image sensor supplier, officially launched its 3K image sensor product series. The series currently has two products, SC500AI and SC501AI, and strives to inject co...[Details]
New Year's Interview with Shi Fangmin, Founder and CEO of Gutaiwei: In 2022, the local IC industry will face a "big test" With the acceleration of global digital transformation and the outbreak of ...[Details]
Protocols for multiple transport layers and applications More and more safety and comfort electronic control functions are added to modern automobile systems. Although the number of ECUs is controlle...[Details]
After two days, I can finally understand 32 interrupts. Because it is operated by library functions, some internal knowledge is not understood in detail, but I just understand that it is like this. B...[Details]
On June 4, Arm CEO Rene Haas made a bold statement in an interview that he would capture 50% of the Windows PC market share within five years.
With its open ecosystem and architectural advanta...[Details]
1 Introduction
The measurement of atmospheric temperature is of great significance. Generally, various thermometers are used for manual measurement, and the measurement results are ...[Details]
Basic Working Principle of Induction Motor
An induction motor is an electric motor that generates torque between the rotor and the stator through induced current. Its basic working principle i...[Details]
On September 15th, Pacific Time (1 a.m. September 16th, Beijing Time), Apple launched new products as scheduled. The much-anticipated iPhone 12 is temporarily absent as previously reported. The new A...[Details]
Three-phase compensated AC voltage regulated power supply principle circuit
Figure 3-phase compensated AC voltage regulated power supply principle circuit
The principle circuit of the three-phas...[Details]