1 – 110 MHz, -55 to 125°C, SOT23, Endura™ Series Oscillator
Features
Applications
Best acceleration sensitivity of 0.1 ppb/g
Any frequencies between 1 MHz and 110 MHz accurate to
6 decimal places
Supply voltage of 1.8V or 2.25V to 3.63V
Excellent total frequency stability as low as ±20 ppm
Low power consumption of 3.8 mA typical at 1.8V
LVCMOS/LVTTL compatible output
AEC-Q100 qualified
5-pin SOT23-5 package: 2.9 x 2.8 mm x mm
RoHS and REACH compliant, Pb-free, Halogen-free and
Antimony-free
Contact SiTime
for up-screening and LAT programs
Avionics systems
Field communication systems
Telemetry applications
Electrical Characteristics
Table 1. Electrical Characteristics
All Min and Max limits are specified over temperature and rated operating voltage with 15 pF output load unless otherwise
stated. Typical values are at 25°C and nominal supply voltage.
Parameters
Output Frequency Range
Frequency Stability
Symbol
f
F_stab
Min.
1
-20
-25
-30
-50
Operating Temperature Range
(ambient)
T_use
-40
-40
-40
-55
Acceleration (g) sensitivity,
Gamma Vector
Supply Voltage
Current Consumption
F_g
–
Typ.
–
–
–
–
–
–
–
–
–
–
Max.
110
+20
+25
+30
+50
+85
+105
+125
+125
0.1
Unit
MHz
ppm
ppm
ppm
ppm
°C
°C
°C
°C
ppb/g
AEC-Q100 Grade 3
AEC-Q100 Grade 2
AEC-Q100 Grade 1
Extended cold, AEC-Q100 Grade1
Condition
Refer to Tables 14 to 16 for a
list of supported frequencies
Inclusive of Initial tolerance at 25°C, 1st year aging at 25°C, and
variations over operating temperature, rated power supply
voltage and load (15 pF ± 10%).
Frequency Range
Frequency Stability and Aging
Operating Temperature Range
Rugged Characteristics
Low sensitivity grade; total gamma over 3 axes; 15 Hz to
2 kHz; MIL-PRF-55310, computed per section 4.8.18.3.1
Supply Voltage and Current Consumption
1.8
–
4.0
3.8
–
1.5
1.3
–
1.98
3.63
4.8
4.5
55
3
2.5
–
V
V
mA
mA
%
ns
ns
Vdd
All voltages between 2.25V and 3.63V including 2.5V, 2.8V,
3.0V and 3.3V are supported.
No load condition, f = 20 MHz, Vdd = 2.25V to 3.63V
No load condition, f = 20 MHz, Vdd = 1.8V
All Vdds
Vdd = 2.25V - 3.63V, 20% - 80%
Vdd = 1.8V, 20% - 80%
IOH = -4 mA (Vdd = 3.0V or 3.3V)
IOH = -3 mA (Vdd = 2.8V and Vdd = 2.5V)
IOH = -2 mA (Vdd = 1.8V)
IOL = 4 mA (Vdd = 3.0V or 3.3V)
IOL = 3 mA (Vdd = 2.8V and Vdd = 2.5V)
IOL = 2 mA (Vdd = 1.8V)
Pin 1, OE
Pin 1, OE
Pin 1, OE logic high or logic low
Vdd
Idd
1.62
2.25
–
–
LVCMOS Output Characteristics
Duty Cycle
Rise/Fall Time
Output High Voltage
DC
Tr, Tf
VOH
45
–
–
90%
Output Low Voltage
VOL
–
–
10%
Vdd
Input Characteristics
Input High Voltage
Input Low Voltage
Input Pull-up Impedance
VIH
VIL
Z_in
70%
–
–
–
–
100
–
30%
–
Vdd
Vdd
k
Rev 0.5
July 22, 2019
www.sitime.com
SiT2044B
1 – 110 MHz, -55 to 125°C, SOT23, Endura™ Series Oscillator
Table 1. Electrical Characteristics
(continued)
Parameters
Startup Time
Enable/Disable Time
Standby Current
Symbol
T_start
T_oe
I_std
Min.
–
–
–
–
RMS Period Jitter
RMS Phase Jitter (random)
T_jitt
T_phj
–
–
–
–
Typ.
–
–
2.6
1.4
1.6
1.9
0.5
1.3
Max.
5.5
130
–
–
Jitter
2.5
3.0
–
–
ps
ps
ps
ps
Unit
ms
ns
A
A
PRELIMINARY
Condition
Measured from the time Vdd reaches its rated minimum value
f = 110 MHz. For other frequencies, T_oe = 100 ns + 3 * cycles
Vdd = 2.8V to 3.3V,
ST
= Low, Output is weakly pulled down
Vdd = 2.5V,
ST
= Low, Output is weakly pulled down
f = 75 MHz, 2.25V to 3.63V
f = 75 MHz, 1.8V
f = 75 MHz, Integration bandwidth = 900 kHz to 7.5 MHz
f = 75 MHz, Integration bandwidth = 12 kHz to 20 MHz
Startup and Resume Timing
Table 2. Pin Description
Pin
1
2
Symbol
GND
NC
Power
No Connect
Output Enable
3
OE/NC
No Connect
4
5
VDD
OUT
Power
Output
Functionality
Electrical ground
No connect
H
[1]
: specified frequency output
L: output is high impedance. Only output driver is disabled.
Any voltage between 0 and Vdd or Open
[1]
: Specified
frequency output. Pin 3 has no function.
Power supply voltage
[2]
Oscillator output
NC
2
Top View
GND
1
5
OUT
YXXXX
OE/NC
3
4
VDD
Figure 1. Pin Assignments
Notes:
1. In OE or ST mode, a pull-up resistor of 10 kΩ or less is recommended if pin 3 is not externally driven. If pin 3 needs to be left floating, use the NC option.
2. A capacitor of value 0.1 µF or higher between Vdd and GND is required.
Table 3. Absolute Maximum Limits
Attempted operation outside the absolute maximum ratings may cause permanent damage to the part. Actual perfo r-
mance of the IC is only guaranteed within the operational specifications, not at absolute maximum ratings.
Parameter
Storage Temperature
Vdd
Electrostatic Discharge
Soldering Temperature (follow standard Pb free soldering guidelines)
Junction Temperature
Note:
3.
[3]
Min.
-65
-0.5
–
–
–
Max.
150
4
2000
260
150
Unit
°C
V
V
°C
°C
Exceeding this temperature for extended period of time may damage the device.
Table 4. Thermal Consideration
[4]
Package
SOT23-5
Note:
4.
JA, 4 Layer Board
(°C/W)
421
JC, Bottom
(°C/W)
175
Refer to JESD51 for
JA
and
JC
definitions, and reference layout used to determine the
JA
and
JC
values in the above table.
Table 5. Maximum Operating Junction Temperature
[5]
Max Operating Temperature (ambient)
85°C
105°C
125°C
Note:
5.
Maximum Operating Junction Temperature
95°C
115°C
135°C
Datasheet specifications are not guaranteed if junction temperature exceeds the maximum operating junction temperature.
Rev 0.5
Page 2 of 13
www.sitime.com
SiT2044B
1 – 110 MHz, -55 to 125°C, SOT23, Endura™ Series Oscillator
Table 6. Environmental Compliance
Parameter
Mechanical Shock
Mechanical Vibration
Temperature Cycle
Solderability
Moisture Sensitivity Level
PRELIMINARY
Condition/Test Method
MIL-STD-883F, Method 2002
MIL-STD-883F, Method 2007
JESD22, Method A104
MIL-STD-883F, Method 2003
MSL1 @ 260°C
Rev 0.5
Page 3 of 13
www.sitime.com
SiT2044B
1 – 110 MHz, -55 to 125°C, SOT23, Endura™ Series Oscillator
Test Circuit and Waveform
Test
Point
Vout
Vdd
PRELIMINARY
tr
80% Vdd
Power
Supply
tf
5
15 pF
(including probe
and fixture
capacitance)
4
0.1µF
50%
20% Vdd
High Pulse
(TH)
Period
Low Pulse
(TL)
1
2
3
Vdd
1k
OE/ST Function
Figure 2. Test Circuit
[6]
Note:
6.
Figure 3. Waveform
[6]
Duty Cycle is computed as Duty Cycle = TH/Period.
Timing Diagrams
90% Vdd
Vdd
Vdd
50% Vdd
T_oe
Pin 4 Voltage
T_start
No Glitch
during start up
OE Voltage
CLK Output
HZ
CLK Output
HZ
T_start: Time to start from power-off
T_oe: Time to re-enable the clock output
Figure 4. Startup Timing (OE Mode)
[7]
Figure 5. OE Enable Timing (OE Mode Only)
Vdd
OE Voltage
50% Vdd
T_oe
CLK Output
HZ
T_oe: Time to put the output in High Z mode
Figure 6. OE Disable Timing (OE Mode Only)
Note:
7.
SiT2044 has “no runt” pulses and “no glitch” output during startup or resume.
Rev 0.5
Page 4 of 13
www.sitime.com
SiT2044B
1 – 110 MHz, -55 to 125°C, SOT23, Endura™ Series Oscillator
The idea of 37 sensors and modules is widely circulated on the Internet. In fact, there are definitely more than 37 sensor modules that Arduino is compatible with. In view of the fact that I have accu...
[ RVB2601 Creative Application Development] +01 Unboxing and First Experience
I am honored to catch the last batch of activities to experience the Pingtou Ge RVB 2601 development board . The courier a...
Urgently looking for a Texas Instruments Ti official website account registered before 2020. You are required to register with corporate information and corporate email!Corporate information registrat...
[align=left][font=微软雅黑][color=#333333][b]Registration for Prize-winning Live Broadcasting | TOF (Time of Flight) Technology Introduction and Product Applications[/b][/color][/font][/align][align=left]...
1. Description MCU: Zero-knowledge open source development board - standard board Module: ESP-12F WIFI module Development tools: Zero-knowledge open source development tools Function: Connect Zero-kno...
Problem phenomenon: The EWARM V8 project generated by CUBE is displayed as blank when opened with IAR Embedded Workbench IDE - Arm 8.20.2. Repeated generation and opening of the project is blank. Prob...
Xingda E-control EtherCAT to Modbus Gateway can be used as a configuration for MODBUS slaves. This gateway allows the conversion of Modbus protocol to EtherCAT protocol, thus achieving interoperabi...[Details]
The energy revolution and the automobile revolution will develop in synergy. With the continuous implementation of the "dual carbon" policy, the energy-side transformation will make electric vehicles...[Details]
In the previous section, we learned about the data types supported by the KEIL C51 compiler. How are these data types used in the definition of constants and variables? Is there anything to pay attent...[Details]
GGE Signs Letter of Intent to Invest $6 Million in Long-Term Commitment to Improve Lithium-Ion Battery Recycling in the U.S.
HOUSTON, March 3, 2023 /PRNewswire/ -- Green Giant Inc. (NASDAQ: GG...[Details]
There are three main categories of steady-state and transient simulation programs for switching power supplies: discrete time domain simulation programs; SPICE; and special simulation programs base...[Details]
Recently, Yuchuang Semiconductor received nearly 100 million yuan in Series A financing from Heli Capital. The funds will be mainly used for the research and development and testing of MicroLED, OLED...[Details]
When debugging the code on the development board, PA9 on the development board is a floating input. When mounting the chip, our board uses this pin and sets it to GPIO_MODE_OUTPUT_PP. The problem t...[Details]
Since the outbreak of the COVID-19 epidemic, the semiconductor industry has become one of the few industries that has maintained high growth against the trend. The market is worried about when the tu...[Details]
1. Cross-compilation tool installation (glibc version needs to be compatible with the version on the development board) method 1: (The latest version of glibc is installed. Older versions of glibc ...[Details]
In
the context of high
energy
prices and increasing attention paid to energy conservation and
environmental protection
, green
energy
solutions
dominated by solar energy and wind...[Details]
Abstract: This paper develops a battery capacity estimation system for uninterruptible power supply systems based on the internal resistance method. This system estimates the residual capacity of t...[Details]
If you are compiling for PIC10, PIC12, or PIC16 series microcontrollers, CCS is the best choice, while for PIC18/PIC24/dsPIC/PIC32 series, MCC is the best choice. The only C compilers for PIC micro...[Details]
Introduction Devices based on USB interface are easy to use and cost-effective, so they have been widely used in people's work and life, such as U disk, mobile hard disk, optical drive, USB camera, ...[Details]
1. Background
Modbus and Profibus are two commonly used communication protocols in industrial control systems. They play an important role in the field of automation. Modbus is a serial commun...[Details]